Sequences & Series - Past Questions & Solutions

November 2008

QUESTION 2

- 2.1 Consider the sequence: $\frac{1}{2}$; 4; $\frac{1}{4}$; 7; $\frac{1}{8}$; 10; ...
 - 2.1.1 If the pattern continues in the same way, write down the next TWO terms in the sequence. (2)
 - 2.1.2 Calculate the sum of the first 50 terms of the sequence. (7)
- 2.2 Consider the sequence: 8; 18; 30; 44; ...
 - 2.2.1 Write down the next TWO terms of the sequence, if the pattern continues in the same way. (2)
 - 2.2.2 Calculate the nth term of the sequence. (6)
 - 2.2.3 Which term of the sequence is 330? (4)
 [21]

QUESTION 3

Given the geometric series: $8x^2 + 4x^3 + 2x^4 + ...$

- 3.1 Determine the nth term of the series. (1)
- 3.2 For what value(s) of x will the series converge? (3)
- Calculate the sum of the series to infinity if $x = \frac{3}{2}$. (3)

	1/10/11/0/10/10/0/11/	Compiled by Navan Mudali
--	-----------------------	--------------------------

	1100 Heliotalionii	Compiled by Navan Mu
2.2.1	60 ; 78	✓✓ answers
2.2.2	8 18 30 44	(2
2.2.2		
	10 12 14	
		✓ a = 1
	$\tilde{2}$ $\tilde{2}$	
	2a = 2	
	a=1	✓ substitution
	$T_n = n^2 + bn + c$	
	8 = 1 + b + c	
	$7 = b + c \qquad \dots (i)$	of coloring
	18 = 4 + 2b + c(1)	✓ solving
	14 = 2b + c(ii)	simultaneously
	(ii) - (i): $14 = 2b + c$	✓ b = 7
	7 = b + c	$\checkmark c = 0$
	∴ 7 = b	
	c = 0	
	$T_n = n^2 + 7n$	
	n	✓ general term
	OR	(6)
	$T_1 = 8$	
	$T_2 - T_1 = 10$	
	$T_3 - T_2 = 12$	$\checkmark T_1 = 8$
		$\checkmark T_2 - T_1 = 10$
	$T_n - T_{n-1} = n$ th term of sequence with $a = 8$ and $d = 2$	$\checkmark T_3 - T_2 = 12$
	Add both sides	✓ Add both sides
	$T_n = 8 + 10 + 12 + \dots + $ to 25 terms	V Add both sides
	n n [1 (, 2 (, 1)]	
	$T_n = \frac{n}{2} [16 + 2(n-1)]$	✓ sequence
	$T_n = n(n+7)$	✓ substitution
	$I_n - I(n + r)$	Stositation
	OR	(6

2.1.1	1	✓✓ answers
	$\frac{1}{16}$; 13	(2)
2.1.2	$\left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} +to\ 25\ terms\right) \left(4 + 7 + 10 + 13 +to\ 25\ terms\right)$	✓ formula for
	(=)	geometric series
	$\frac{a(r^n-1)}{r-1} = \frac{n}{2}[2a+(n-1)d]$	geometric series $ \frac{\frac{1}{2}\left(\left(\frac{1}{2}\right)^{25} - 1\right)}{\frac{1}{2} - 1} $
	$= \frac{\frac{1}{2} \left(\left(\frac{1}{2} \right)^{25} - 1 \right)}{\frac{1}{2} - 1} = \frac{25}{2} [2(4) + 24(3)]$	$\frac{1}{2}-1$ ✓ answer for
	$\frac{1}{2}-1$	geometric series
	= 0,9999999 = 1 000	✓ formula for
	g 100100	linear series
	$S_{50} = 1001,00$	$\checkmark \frac{25}{2} [2(4) + 24(3)]$
	OR	✓ 1000
		✓ answer
	$S_{50} = 25$ terms of 1 st sequence + 25 terms of 2 nd sequence	(7)
	$S_{50} = \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} +to\ 25\ terms\right) + \left(4 + 7 + 10 + 13 +to\ 25\ terms\right)$	Note: If used 50 terms in each series: max
	$1((1)^{25})$	5/7
	$S_{50} = \frac{\frac{1}{2} \left(\left(\frac{1}{2} \right)^{25} - 1 \right)}{1} + \frac{25}{2} [2(4) + 24(3)]$	(answer then is 3876)
	$\frac{1}{2}$	Answer only: 6 / 7
	$S_{50} = 0,9999999 + 1000$	Write out series
	$S_{50} = 1001,00$	and then correct answer: full marks
		Write out both
		series and not add
		them: 6 / 7

- 0 8 18 30 44 8 10 12 14
- $T_0 = 0$ $a(0)^2 + b(0) + c = 0$ c = 0
- constant second difference = 2

$$T_1 = 1 + b = 8$$

$$b = 7$$

$$T_n = n^2 + 7n$$

$$T_n = n(n+7)$$

OR

- $T_n = \frac{n-1}{2} \left[2(\text{first first difference}) + (n-2)(\text{second difference}) \right] + T_1$
- $T_n = \frac{n-1}{2} [2(10) + (n-2)(2)] + 8$
- $T_n = 10(n-1) + (n-2)(n-1) + 8$
- $T_n = 10n 10 + n^2 3n + 2 + 8$
- $T_n = n^2 + 7n$

OR

- $T_n = (n-1)T_2 (n-2)T_1 + 2nd \ difference \frac{(n-1)(n-2)}{2}$ $T_n = (n-1)(18) (n-2)(8) + 2\frac{(n-1)(n-2)}{2}$
- $T_n = 18n 18 8n + 16 + n^2 3n + 2$
- $T_n = n^2 + 7n$

OR

- √ finding T₀
- $\checkmark c = 0$
- ✓ second difference = 2
- $\checkmark a = 1$
- ✓ substitution
- $\checkmark b = 7$

(6)

- ✓ formula
- √ ✓ substitution
- √ √ simplification
- √ answer

(6)

- ✓✓ formula
- √ ✓ substitution
- √ simplification
- √ answer

(6)

			Complete by Stavan Straua
	$T_n = \frac{(n^2 - 5n + 6)(8) - 2(n^2 - 5n + 6)(8)}{(n^2 - 20)(n^2 + 24)(n^2 - 20)(n^2 + 24)(n^2 - 20)(n^2 + 24)(n^2 - 20)(n^2 + 24)(n^2 - 20)(n^2 -$	$\frac{(n-1)(n-3)T_2 + (n-2)(n-1)T_3}{2}$ $\frac{(n^2 - 4n + 3)(18) + (n^2 - 3n + 2)(30)}{2}$ $\frac{2}{n^2 + 72n - 54 + 15n^2 - 45n + 30}$	✓ formula ✓✓ substitution ✓✓ simplification ✓ answer (6)
	$T_n = n^2 + 7n$ $T_1 = 8 = 1.8$	OR	✓✓✓✓ observation ✓ answer
	$T_1 = 3 - 1.8$ $T_2 = 18 = 2.9$ $T_3 = 30 = 3.10$ $T_4 = 44 = 4.11$ $T_n = n^2 + 7n$		Note: By trial and error: 6 / 6 Answer only: 6 / 6
2.2.3	n(n+7) = 330 $n^2 + 7n - 330 = 0$ (n+22)(n-15) = 0 n = -22 or $n = 15n = 15\therefore 15^{\text{th}} term is 330.$	Note: 3/4 if did not reject $n = -22Answer only: 4/4By trial and error and then write n = 15:4/41/4 if just equate T_n that they foundIf linear T_n and valid answer: 2/4$	✓ substitution ✓ standard form ✓ factorisation ✓ answer (4)
			[21]

3.1	$T_n = \left(8x^2\right)\left(\frac{x}{2}\right)^{n-1}$ $T_n = 8\left(\frac{1}{2}\right)^{n-1}x^{n+1}$ $T_n = 16x\left(\frac{x}{2}\right)^n$ $T_n = 2^{4-n}x^{n+1}$	OR	✓ answer (1)
	$T_n = 8\left(\frac{1}{2}\right)^{n-1} x^{n+1}$	OK	
	$T_n = 16x \left(\frac{x}{2}\right)^n$	OR	
	$T_n = 2^{4-n} x^{n+1}$	OR	
3.2	$ratio = \frac{x}{2}$		✓ ratio
	$-1 < \frac{x}{2} < 1$ $-2 < x < 2$		✓ inequality
	-2 < x < 2		✓ answer
			(3)
3.3	$S_{\infty} = \frac{a}{1 - r}$ $S_{\infty} = \frac{8x^2}{1 - \frac{x}{2}}$		✓ substitution into formula for S_{∞}
	(2)2		✓ substitution of $x = \frac{3}{2}$
	$S_{\infty} = \frac{8\left(\frac{3}{2}\right)^2}{1 - \frac{1}{2}\left(\frac{3}{2}\right)}$ $S_{\infty} = 72$		✓ answer (3)
		OR	
	$18 + \frac{27}{2} + \frac{81}{8} + \dots$		✓ series
	$S_{\infty} = \frac{18}{1 - \frac{3}{4}}$ 18		✓ substitution
	$S_{\infty} = \frac{18}{\frac{1}{4}}$ $S_{\infty} = 72$		✓ answer (3)
	$S_{\infty} = 72$		Formula Incorrect: 0 / 3
	L		1/1

November 2009

QUESTION 2

2.1 Tebogo and Matthew's teacher has asked that they use their own rule to construct a sequence of numbers, starting with 5. The sequences that they have constructed are given below.

Matthew's sequence: 5; 9; 13; 17; 21; ...

Tebogo's sequence: 5; 125; 3 125; 78 125; 1 953 125; ...

Write down the n^{th} term (or the rule in terms of n) of:

- 2.1.1 Matthew's sequence (3)
- 2.1.2 Tebogo's sequence (2)
- 2.2 Nomsa generates a sequence which is both arithmetic and geometric. The first term is 1. She claims that there is only one such sequence. Is that correct? Show ALL your workings to justify your answer.

 (5)

Given:
$$\sum_{t=0}^{99} (3t-1)$$

- 3.1 Write down the first THREE terms of the series. (1)
- 3.2 Calculate the sum of the series. (4)

[5]

QUESTION 4

The following sequence of numbers forms a quadratic sequence:

$$-3$$
; -2 ; -3 ; -6 ; -11 ; ...

- 4.1 The first differences of the above sequence also form a sequence. Determine an expression for the general term of the first differences. (3)
- 4.2 Calculate the first difference between the 35th and 36th terms of the quadratic sequence. (2)
- 4.3 Determine an expression for the n^{th} term of the quadratic sequence. (4)
- 4.4 Explain why the sequence of numbers will never contain a positive term. (2)

 [11]

QUESTION 5

Data regarding the growth of a certain tree has shown that the tree grows to a height of 150 cm after one year. The data further reveals that during the next year, the height increases by 18 cm. In each successive year, the height increases by $\frac{8}{9}$ of the previous year's increase in height. The table below is a summary of the growth of the tree up to the end of the fourth year.

	First year	Second year	Third year	Fourth year
Tree height (cm)	150	168	184	$198\frac{2}{9}$
Growth (cm)		18	16	$14\frac{2}{9}$

- 5.1 Determine the increase in the height of the tree during the seventeenth year. (2)
- 5.2 Calculate the height of the tree after 10 years. (3)
- 5.3 Show that the tree will never reach a height of more than 312 cm. (3)

[8]

OR $T_s = 5 + (n-1)(4)$ $= 4n + 1$ $T_s = 5 + (n-1)(4)$ $= 4n + 1$ $T_s = 5 + (n-1)(4)$ $= 4n + 1$ $T_s = 5 + (n-1)(4)$ $= 4n + 1$ $T_s = 5 + (n-1)(4)$ $= 4n + 1$ $T_s = 5 + (n-1)(4)$ $= 4n + 1$ $T_s = 5 + (n-1)(4)$ $= 4n + 1$ $T_s = 5 + (n-1)(4)$ $T_s = 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +$	2.1.1	I		/ / / A	
OR $T_{s} = 5 + (n-1)(4)$ $= 4n + 1$ 2.1.2 $T_{s} = 5(25)^{s-1}$ The sequence is $1 : 1 + d : 1 + 2d : 1 + 3d :$ (AP) $3 : 1 + d = r$ and $3 : r : r : r^{2} : r^{2} :$ (GP) $3 : 1 + d = r$ and $3 : r : r : r^{2} : r^{2} :$ (GP) $3 : 1 + d = r$ and $3 : r : r : r^{2} : r^{2} :$ (GP) $3 : 1 + d = r$ and $3 : r : r : r^{2} : r^{2} :$ (GP) $3 : 1 + d = r$ and $3 : r : r : r^{2} : r^{2} :$ (GP) $3 : 1 + d = r$ and $3 : r : r : r^{2} : r^{2} :$ (GP) $3 : 1 + d = r$ (GP	2.1.1	$T_n = 4n + 1$		✓✓✓ Answer	
$T_{n} = 5 + (n-1)(4)$ $= 4n + 1$ $2.1.2 T_{n} = 5(25)^{n-1}$ $2.1.2 T_{n} = 5(25)^{n-1}$ $2.1.2 T_{n} = 5(25)^{n-1}$ $2.1.3 T_{n} = 5(25)^{n-1}$ $2.1.4 T_{n} = 5(25)^{n-1}$ $2.1.5 T_{n} = 5(25)^{n-1}$ $2.1.6 T_{n} = 5(25)^{n-1}$ $2.1.7 T_{n} = 1$ $2.1.7 T_{n} = 5(25)^{n-1}$ $2.1.7 T_{n} = 1$ $2.1.7 T_$			NOTE:	only	(2)
$T_n = 5 + (n-1)(4) \\ = 4n+1$		OR	If $T_n = 5 + (n-1)(4)$		(3)
		T			
2.1.2 $T_n = 5(25)^{n-1}$ (3) 2.1.2 $T_n = 5(25)^{n-1}$ (2) The sequence is $1: 1+d: 1+2d: 1+3d: \dots$ (AP) and $1: r: r^2: r^2: \dots$ (GP) $ \therefore 1+d=r \text{and} d=r-1 $ But $1+2d=r^2$ (1+d) ² = 1+2d $ 1+2(r-1)=r^2 (1+d)^2=1+2d$ $ r^2-2r+1=0 \text{OR} 1+2d+d^2=1+2d$ $ (r-1)^2=0 d^2=0$ $ r=1 d=0$ $ \therefore d=0 \vdots \text{ the one and only such sequence is } 1: 1: 1: 1: \dots$ Nomsa is correct. OR $ T_1 = 1 \text{Let the sequence be} 1: a: b: \dots$ Geometric: $r=\frac{a}{1}=\frac{b}{a}$ $a^2=b$ Arithmetic: $d=a-1=b-a$ $2a-1=b$ $2a-1=a^2$ $0=a^2-2a+1$ $0=(a-1)^2$ $a=1$ $b=1$ The analog (AP) (GP) $ \checkmark 1+d=r \\ \checkmark 1+2d=r^2 $ $\checkmark r=1$ $\checkmark d=0$ $\checkmark reason$ (5) Sequence is $1: 1: 1: 1: 1: 1: \dots$ Then $d=0$ $r=1$ Therefore only one sequence exists. Nomsa is correct $Max \ 3/5$ If the candidate only gives $Sequence is 1: 1: 1: 1: 1: 1: \dots \checkmark Setting up sequence \checkmark a^2=b \checkmark b=2a-1 \checkmark a=1 \checkmark b=1 (5)$				$\checkmark d = 4$	
2.1.2 $T_n = 5(25)^{n-1}$ (3) 2.1.2 $T_n = 5(25)^{n-1}$ (2) The sequence is $1 : 1 + d : 1 + 2d : 1 + 3d : \dots$ (AP) and $1 : r : r^2 : r^3 : \dots$ (GP) $\therefore 1 + d = r \text{and} d = r - 1$ But $1 + 2d = r^2$ $r^2 = 1 + 2d$ $1 + 2(r - 1) = r^2 (1 + d)^2 = 1 + 2d$ $1 + 2(r - 1)^2 = 0 \text{OR} 1 + 2d + d^2 = 1 + 2d$ $(r - 1)^2 = 0 d^2 = 0$ $r = 1 d = 0$ $\therefore d = 0 \text{the one and only such sequence is } 1 : 1 : 1 : \dots$ Nomsa is correct. OR $T_1 = 1$ Let the sequence be $1 : a : b : \dots$ Geometric: $r = \frac{a}{1} = \frac{b}{a}$ $a^2 = b$ Arithmetic: $d = a - 1 = b - a$ $2a - 1 = b$ $2a - 1 = a$ $2a - 1 = b$ $2a - 1 = a^2$ $0 = a^2 - 2a + 1$ $0 = (a - 1)^2$ $a = 1$ $b = 1$ The and an interval of the candidate only gives Sequence is $1 : 1 : 1 : 1 : 1 : \dots$ Then $1 = a + (n - 1)d$ only then $1 / 5$ (5)		=4n+1		✓ substitution	
2.1.2 $T_n = 5(25)^{n-1}$ $\checkmark r = 25$ \checkmark answer (2) 2.2 The sequence is $1: 1+d: 1+2d: 1+3d:$ (AP) and $1: r: r^2: r^3:$ (GP) $\therefore 1+d=r \text{ and } d=r-1$ But $1+2d=r^2$ $r^2=1+2d$ $1+2(r-1)=r^2 \qquad (1+d)^2=1+2d$ $r^2-2r+1=0 \qquad \text{OR} \qquad 1+2d+d^2=1+2d$ $(r-1)^2=0 \qquad d^2=0$ $r=1 \qquad d=0$ $\therefore d=0 \qquad \vdots \text{ the one and only such sequence is } 1: 1: 1: 1:$ Nomsa is correct. OR $T_1 = 1$ Let the sequence be $1: a: b:$ Geometric: $r = \frac{a}{1} = \frac{b}{a}$ $a^2 = b$ Arithmetic: $d = a-1=b-a$ $2a-1=b$ $2a-1=a^2$ $0 = a^2-2a+1$ $0 = (a-1)^2$ $a=1$ $b=1$ 1 The denomal only gives Sequence is $1: 1: 1: 1: 1: 1: 1:$ Then $d = 0$ $r = 1$ Therefore only one sequence exists. Nomsa is correct $Max $					
2.2 The sequence is 1; 1 + d; 1 + 2d; 1 + 3d; (AP) and 1; r ; r^2 ; r^3 ; (GP) $ \therefore 1 + d = r \text{and} d = r - 1 \\ \text{But } 1 + 2d = r^2 \qquad \qquad$					(3)
2.2 The sequence is $1 : 1 + d : 1 + 2d : 1 + 3d :$ (AP) and $1 : r : r^2 : r^3 :$ (GP) $\therefore 1 + d = r \text{and} d = r - 1$ But $1 + 2d = r^2$ $r^2 = 1 + 2d$ $1 + 2(r - 1) = r^2 \qquad (1 + d)^2 = 1 + 2d$ $r^2 - 2r + 1 = 0 \text{OR} 1 + 2d + d^2 = 1 + 2d$ $(r - 1)^2 = 0 d^2 = 0$ $r = 1 d = 0$ $\therefore d = 0$ $\therefore \text{the one and only such sequence is } 1 : 1 : 1 : 1 :$ Nomsa is correct. OR $T_1 = 1$ Let the sequence be $1 : a : b :$ Geometric: $r = \frac{a}{1} = \frac{b}{1}$ $a^2 = b$ Arithmetic: $d = a - 1 = b - a$ $2a - 1 = b$ $2a - 1 = a^2$ $0 = a^2 - 2a + 1$ $0 = (a - 1)^2$ $a = 1$ $b = 1$ If the candidate only gives Sequence is $1 : 1 : 1 : 1 : 1 : 1 :$ $then 2 / 5 If a r^{n-1} = a + (n-1)d only then 1 / 5 (5)$	2.1.2	$T_n = 5(25)^{n-1}$			
2.2 The sequence is 1; $1 + d$; $1 + 2d$; $1 + 3d$; (AP) and 1; r ; r^2 ; r^3 ; (GP) $\therefore 1 + d = r \text{and} d = r - 1$ But $1 + 2d = r^2$ $r^2 = 1 + 2d$ $1 + 2(r - 1) = r^2 \qquad (1 + d)^2 = 1 + 2d$ $r^2 - 2r + 1 = 0 \qquad OR 1 + 2d + d^2 = 1 + 2d$ $(r - 1)^2 = 0 \qquad d^2 = 0$ $r = 1 \qquad d = 0$ $\therefore d = 0$ $\therefore the one and only such sequence is 1; 1; 1;$ Nomsa is correct. OR $T_1 = 1$ Let the sequence be 1; a ; b ; Geometric: $r = \frac{a}{1} = \frac{b}{a}$ Arithmetic: $d = a - 1 = b - a$ $2a - 1 = b$ $2a - 1 = a^2$ $0 = a^2 - 2a + 1$ $0 = (a - 1)^2$ $a = 1$ $b = 1$ If the candidate only gives Sequence is 1; 1; 1; 1; 1; 1; 1; then $2/5$ If the candidate only gives Sequence is 1; 1; 1; 1; 1; 1; 1; then $2/5$ If $ar^{n-1} = a + (n-1)d$ only then $1/5$				✓ answer	
and $1 : r : r^2 : r^3 : \dots$ (GP)					(2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.2		; 1 + 3 <i>d</i> ; (AP)		
But $1 + 2d = r^2$ $r^2 = 1 + 2d$ $1 + 2(r - 1) = r^2 \qquad (1 + d)^2 = 1 + 2d$ $r^2 - 2r + 1 = 0 \qquad OR \qquad 1 + 2d + d^2 = 1 + 2d$ $(r - 1)^2 = 0 \qquad d^2 = 0$ $r = 1 \qquad d = 0$ $\therefore d = 0$ $\therefore the one and only such sequence is 1; 1; 1; 1; \dots$ Nomsa is correct. OR $T_1 = 1$ Let the sequence be 1; a; b; Geometric: $r = \frac{a}{1} = \frac{b}{a}$ $a^2 = b$ Arithmetic: $d = a - 1 = b - a$ $2a - 1 = b$ $2a - 1 = a^2$ $0 = a^2 - 2a + 1$ $0 = (a - 1)^2$ $a = 1$ $b = 1$ $D = (a - 1)^2$ $a = 1$ $b = 1$ $C = (1 + d)^2 = 1 + 2d$ $d = 0$ $r = 1$ $fr = 3$ $r = 1$ r		and 1; r ; r^2 ; r^3 ;	(GP)		
But $1 + 2d = r^2$ $r^2 = 1 + 2d$ $1 + 2(r - 1) = r^2 \qquad (1 + d)^2 = 1 + 2d$ $r^2 - 2r + 1 = 0 \qquad OR \qquad 1 + 2d + d^2 = 1 + 2d$ $(r - 1)^2 = 0 \qquad d^2 = 0$ $r = 1 \qquad d = 0$ $\therefore d = 0$ $\therefore the one and only such sequence is 1; 1; 1; 1; \dots$ Nomsa is correct. OR $T_1 = 1$ Let the sequence be 1; a; b; Geometric: $r = \frac{a}{1} = \frac{b}{a}$ $a^2 = b$ Arithmetic: $d = a - 1 = b - a$ $2a - 1 = b$ $2a - 1 = a^2$ $0 = a^2 - 2a + 1$ $0 = (a - 1)^2$ $a = 1$ $b = 1$ $D = (a - 1)^2$ $a = 1$ $b = 1$ $D = (a - 1)^2$ $a = 1$ $b = 1$ $D = (a - 1)^2$ $a = 1$ $b = 1$ $C = (1 + d)^2 = 1 + 2d$ $C = (1 + d)^2 = 1 + 2d$ $C = (1 + d)^2 = 1 + 2d$ $C = (1 + d)^2 = 1 + 2d$ $C = (1 + d)^2 = 1 + 2d$ $C = (1 + d)^2 = 1 + 2d$ $C = (1 + d)^2 = 1 + 2d$ $C = (1 + d)^2 = 1 + 2d$ $C = (1 + d)^2 = 1 + 2d$ $C = (1 + d)^2 = 1 + 2d$ $C = (1 + d)^2 = 1 + 2d$ $C = (1 + d)^2 = 1 + 2d$ $C = (1 + d)^2 = 1 + 2d$ $C = (1 + d)^2 = 1 + 2d$ $C = (1 + d)^2 = 1 + 2d$ $C = (1 + d)^2 = 1 + 2d$ $C = (1 + d)^2 = 1 + 2d$ $C = (1 + d)^2 = 1$ $C = (1 + d)^2 $					
$r^{2} = 1 + 2d$ $1 + 2(r - 1) = r^{2} \qquad (1 + d)^{2} = 1 + 2d$ $r^{2} - 2r + 1 = 0 \qquad OR \qquad 1 + 2d + d^{2} = 1 + 2d$ $(r - 1)^{2} = 0 \qquad d^{2} = 0$ $r = 1 \qquad d = 0$ $\therefore d = 0$ $\therefore \text{ the one and only such sequence is } 1; 1; 1; \dots$ $Nomsa \text{ is correct.}$ OR $T_{1} = 1$ Let the sequence be 1; a; b; Geometric: $r = \frac{a}{1} = \frac{b}{a}$ $a^{2} = b$ Arithmetic: $d = a - 1 = b - a$ $2a - 1 = a$ $2a - 1 = a$ $2a - 1 = a^{2}$ $0 = a^{2} - 2a + 1$ $0 = (a - 1)^{2}$ $a = 1$ $b = 1$ $f \text{ for } a^{n-1} = a + (n - 1)d \text{ only then } 1 / 5$ (5) $x = 1$		1	1		
$1 + 2(r - 1) = r^{2} \qquad (1 + d)^{2} = 1 + 2d$ $r^{2} - 2r + 1 = 0 \qquad OR \qquad 1 + 2d + d^{2} = 1 + 2d$ $(r - 1)^{2} = 0 \qquad d^{2} = 0$ $r = 1 \qquad d = 0$ $r = 1 \qquad \sqrt{reason}$ $\therefore d = 0$ $\therefore \text{ the one and only such sequence is } 1; 1; 1; \dots$ $Nomsa \text{ is correct.}$ OR $T_{1} = 1$ $Let \text{ the sequence be } 1; a; b; \dots$ $Geometric: \qquad r = \frac{a}{1} = \frac{b}{a}$ $a^{2} = b$ $Arithmetic: \qquad d = a - 1 = b - a$ $2a - 1 = b$ $2a - 1 = a^{2}$ $0 = a^{2} - 2a + 1$ $0 = (a - 1)^{2}$ $a = 1$ $b = 1$ $D = (a - 1)^{2}$ $a = 1$ $b = 1$ $D = (a - 1)^{2}$ $a = 1$ $b = 1$ $D = (a - 1)^{2}$ $a = 1$ $b = 1$ $D = (a - 1)^{2}$ $a = 1$ $b = 1$ $D = (a - 1)^{2}$ $a = 1$ $b = 1$ $D = (a - 1)^{2}$ $a = 1$ $b = 1$ $D = (a - 1)^{2}$ $a = 1$ $a = 1$ $b = 1$ $D = (a - 1)^{2}$ $a = 1$ $a = 1$ $b = 1$ $D = (a - 1)^{2}$ $a = 1$ $D = (a $		But $1+2d=r^2$	2	$\checkmark 1 + 2d = r^2$	
$r^{2}-2r+1=0 \qquad OR \qquad 1+2d+d^{2}=1+2d \qquad \forall r=1 \qquad \forall d=0$ $r=1 \qquad d=0 \qquad r=1 \qquad \forall reason$ $\therefore d=0 \qquad \vdots \text{ the one and only such sequence is } 1;1;1;\dots$ $Nomsa is correct.$ $OR \qquad T_{1}=1 \qquad If: Sequence is 1;1;1;1;1;1;1;\dots$ $Geometric: \qquad r=\frac{a}{1}=\frac{b}{a} \qquad If: Sequence is 1;1;1;1;1;1;1;\dots$ $Then \qquad d=0 \qquad r=1 \qquad \forall Setting up sequence exists.$ $Therefore only one sequence exists.$ $Nomsa is correct \qquad Max 3/5 \qquad \forall b=2a-1 \qquad \forall a=1 \qquad \forall b=1 \qquad far^{n-1}=a+(n-1)d \text{ only then } 1/5 \qquad (5)$			$r^2 = 1 + 2d$		
$(r-1)^2 = 0 \qquad d^2 = 0$ $r = 1 \qquad d = 0$ $r = 1 \qquad r = 1$ $\therefore d = 0$ $\therefore \text{ the one and only such sequence is } 1; 1; 1; \dots$ Nomsa is correct. OR $T_1 = 1$ $\text{Let the sequence be } 1; a; b; \dots$ $Geometric: r = \frac{a}{1} = \frac{b}{a}$ $a^2 = b$ $\text{Arithmetic: } d = a - 1 = b - a$ $2a - 1 = b$ $2a - 1 = a^2$ $0 = a^2 - 2a + 1$ $0 = (a - 1)^2$ $a = 1$ $b = 1$ $\text{If } m \ a^{n-1} = a + (n-1)d \text{ only then } 1/5$ If $a = 0$ Freason Freason Freason Sequence is 1; 1; 1; 1; 1; 1; 1; Then $d = 0$ $r = 1$ Therefore only one sequence exists. Nomsa is correct $\text{Max } 3/5$ If the candidate only gives sequence is 1; 1; 1; 1; 1; 1; 1; 1; then $2/5$ If $a = 1$ $b = 1$ If $a = 1$ $a = 1$ $b = 1$ If $a = 1$ $a = 1$ $b = 1$ If $a = 1$ $a = 1$ $b = 1$ If $a = 1$ $a = 1$ $b = 1$ If $a = 1$ $a = 1$ $b = 1$ If $a = 1$ $a = 1$ $b = 1$ If $a = 1$ $a = 1$ $b = 1$ If $a = 1$ $a = 1$ $b = 1$ If $a = 1$ $a = 1$ $b = 1$ If $a = 1$ $a = 1$ $b = 1$ If $a = 1$ $a = 1$ $b = 1$ If $a = 1$ $a = 1$ $b = 1$ If $a = 1$ $a = 1$ $b = 1$ If $a = 1$ $a = 1$ $b = 1$ If $a = 1$ $a = 1$ $a = 1$ $a = 1$ $b = 1$ If $a = 1$ $a =$		$1 + 2(r - 1) = r^2 (1 + a)$	$d)^2 = 1 + 2d$		
$(r-1)^2 = 0 \qquad d^2 = 0$ $r = 1 \qquad d = 0$ $r = 1 \qquad r = 1$ $\therefore d = 0$ $\therefore \text{ the one and only such sequence is } 1; 1; 1; \dots$ Nomsa is correct. OR $T_1 = 1$ $\text{Let the sequence be } 1; a; b; \dots$ $Geometric: r = \frac{a}{1} = \frac{b}{a}$ $a^2 = b$ $\text{Arithmetic: } d = a - 1 = b - a$ $2a - 1 = b$ $2a - 1 = a^2$ $0 = a^2 - 2a + 1$ $0 = (a - 1)^2$ $a = 1$ $b = 1$ $\text{If the candidate only gives}$ Sequence is 1; 1; 1; 1; 1; 1; $\text{then } 2/5$ If the candidate only gives} $\text{Sequence is } 1; 1; 1; 1; 1; 1; 1; \dots$ $\text{then } 2/5$ If $ar^{n-1} = a + (n-1)d$ only then $1/5$		$r^2 - 2r + 1 = 0$	$d^2 = 1 + 2d$	$\sqrt{r}=1$	
$r = 1$ $r = 1$ $r = 1$ $r = 1$ $d = 0$ $r = 1$ $d = 0$ $r = 1$ $\therefore d = 0$ $\therefore \text{ the one and only such sequence is } 1; 1; 1; \dots$ Nomsa is correct. OR $T_1 = 1$ $\text{Let the sequence be } 1; a; b; \dots$ $Geometric: r = \frac{a}{1} = \frac{b}{a}$ $a^2 = b$ $\text{Arithmetic: } d = a - 1 = b - a$ $2a - 1 = b$ $2a - 1 = a^2$ $0 = a^2 - 2a + 1$ $0 = (a - 1)^2$ $a = 1$ $b = 1$ If the candidate only gives Sequence is 1; 1; 1; 1; 1; 1; 1; $\text{Then } d = 0$ $r = 1$ $\text{Therefore only one sequence exists.}$ Nomsa is correct Max 3 / 5 $\text{If the candidate only gives}$ Sequence is 1; 1; 1; 1; 1; 1; 1; $\text{then } 2 / 5$ $\text{for } a = 1$ $\text{then } 2 / 5$ $\text{If } ar^{r-1} = a + (n-1)d \text{ only then } 1 / 5$ (5)					
$r = 1$ ∴ $d = 0$ ∴ the one and only such sequence is 1; 1; 1; Nomsa is correct. $T_1 = 1$ Let the sequence be 1; a ; b ; Geometric: $r = \frac{a}{1} = \frac{b}{a}$ $a^2 = b$ Arithmetic: $d = a - 1 = b - a$ $2a - 1 = b$ $2a - 1 = a^2$ $0 = a^2 - 2a + 1$ $0 = (a - 1)^2$ $a = 1$ $b = 1$ (5) Freason		` '			
$\therefore d = 0$ $\therefore \text{ the one and only such sequence is } 1; 1; 1; \dots$ Nomsa is correct. OR $T_1 = 1$ $\text{Let the sequence be } 1; a; b; \dots$ $\text{Geometric: } r = \frac{a}{1} = \frac{b}{a}$ $a^2 = b$ $\text{Arithmetic: } d = a - 1 = b - a$ $2a - 1 = a^2$ $2a - 1 = a^2$ $0 = a^2 - 2a + 1$ $0 = (a - 1)^2$ $a = 1$ $b = 1$ If the candidate only gives Sequence is 1; 1; 1; 1; 1; 1; 1; then $2 / 5$ If $ar^{n-1} = a + (n-1)d$ only then $1 / 5$ (5) A Setting up sequence $2 / a^2 = b$ A Setting up sequence $2 / a^2 = b$ A sequence is 1; 1; 1; 1; 1; 1; then $2 / 5$ If $2a / 3 / 3 / 5$ If $2a / 3 / 3 / 3 / 3 / 3$ If $2a / 3 / 3 / 3 / 3 / 3$ If $2a / 3 / 3 / 3 / 3 / 3$ If $2a / 3 / 3 / 3 / 3$ If		r=1	d = 0		
∴ the one and only such sequence is 1; 1; 1; Nomsa is correct. OR $T_1 = 1$ Let the sequence be 1; a ; b ; Geometric: $r = \frac{a}{1} = \frac{b}{a}$ $a^2 = b$ Arithmetic: $d = a - 1 = b - a$ $2a - 1 = b$ $2a - 1 = a^2$ $0 = a^2 - 2a + 1$ $0 = (a - 1)^2$ $a = 1$ $b = 1$ If: Sequence is 1; 1; 1; 1; 1; 1; 1; 1; Then $d = 0$ $r = 1$ Therefore only one sequence exists. Nomsa is correct Max 3 / 5 If the candidate only gives Sequence is 1; 1; 1; 1; 1; 1; 1; then 2 / 5 If $ar^{n-1} = a + (n-1)d$ only then 1 / 5 (5)			r = 1	✓reason	
Nomsa is correct. OR $T_1 = 1$ Let the sequence be $1; a; b;$ Geometric: $r = \frac{a}{1} = \frac{b}{a}$ $a^2 = b$ Arithmetic: $d = a - 1 = b - a$ $2a - 1 = b$ $2a - 1 = a^2$ $0 = a^2 - 2a + 1$ $0 = (a - 1)^2$ $a = 1$ $b = 1$ If: Sequence is $1; 1; 1; 1; 1; 1;$ Then $d = 0$ $r = 1$ Therefore only one sequence exists. Nomsa is correct $Max 3 / 5$ If the candidate only gives $Sequence is 1; 1; 1; 1; 1; 1;$ $then 2 / 5$ If $ar^{n-1} = a + (n-1)d$ only then $1 / 5$					(5)
OR $T_{1} = 1$ Let the sequence be $1; a; b;$ Geometric: $r = \frac{a}{1} = \frac{b}{a}$ $a^{2} = b$ Arithmetic: $d = a - 1 = b - a$ $2a - 1 = b$ $2a - 1 = a^{2}$ $0 = a^{2} - 2a + 1$ $0 = (a - 1)^{2}$ $a = 1$ $b = 1$ If: Sequence is $1; 1; 1; 1; 1; 1; 1; 1;$ Then $d = 0$ $r = 1$ Therefore only one sequence exists. Nomsa is correct Max $3 / 5$ If the candidate only gives Sequence is $1; 1; 1; 1; 1; 1; 1; 1;$ $then 2 / 5$ If $ax^{n-1} = a + (n-1)d$ only then $1 / 5$ If $ax^{n-1} = a + (n-1)d$ only then $1 / 5$		_	e is 1; 1; 1;		
T ₁ = 1 Let the sequence be 1; a ; b ; Geometric: $r = \frac{a}{1} = \frac{b}{a}$ $a^2 = b$ Arithmetic: $d = a - 1 = b - a$ $2a - 1 = b$ $2a - 1 = a^2$ $0 = a^2 - 2a + 1$ $0 = (a - 1)^2$ $a = 1$ $b = 1$ If: Sequence is 1; 1; 1; 1; 1; 1; 1; Then $d = 0$ $r = 1$ Therefore only one sequence exists. Nomsa is correct $Max 3 / 5$ If the candidate only gives Sequence is 1; 1; 1; 1; 1; 1; then 2 / 5 If $ar^{n-1} = a + (n-1)d$ only then 1 / 5		Nomsa is correct.			
T ₁ = 1 Let the sequence be 1; a ; b ; Geometric: $r = \frac{a}{1} = \frac{b}{a}$ $a^2 = b$ Arithmetic: $d = a - 1 = b - a$ $2a - 1 = b$ $2a - 1 = a^2$ $0 = a^2 - 2a + 1$ $0 = (a - 1)^2$ $a = 1$ $b = 1$ If: Sequence is 1; 1; 1; 1; 1; 1; 1; Then $d = 0$ $r = 1$ Therefore only one sequence exists. Nomsa is correct $Max 3 / 5$ If the candidate only gives Sequence is 1; 1; 1; 1; 1; 1; then 2 / 5 If $ar^{n-1} = a + (n-1)d$ only then 1 / 5		OR			
Let the sequence be $1; a; b;$ Geometric: $r = \frac{a}{1} = \frac{b}{a}$ $a^2 = b$ Arithmetic: $d = a - 1 = b - a$ $2a - 1 = b$ $2a - 1 = a^2$ $0 = a^2 - 2a + 1$ $0 = (a - 1)^2$ $a = 1$ $b = 1$ Sequence is $1; 1; 1; 1; 1; 1; 1;$ Then $d = 0$ $r = 1$ Therefore only one sequence exists. Nomsa is correct $Max 3 / 5$ If the candidate only gives $Sequence is 1; 1; 1; 1; 1; 1; A = 0 C = a^2 - b C = a^2 - b C = a^2 - 1 C = a - 1 C = $			If:		
Geometric: $r = \frac{a}{1} = \frac{b}{a}$ $a^2 = b$ Arithmetic: $d = a - 1 = b - a$ $2a - 1 = b$ $2a - 1 = a^2$ $0 = a^2 - 2a + 1$ $0 = (a - 1)^2$ $a = 1$ $b = 1$ Then $d = 0$ $r = 1$ Therefore only one sequence exists. Nomsa is correct Max 3 / 5 If the candidate only gives Sequence is 1; 1; 1; 1; 1; 1; 1; then 2 / 5 If $ar^{n-1} = a + (n-1)d$ only then 1 / 5		•	Sequence is 1; 1; 1; 1; 1; 1;		
Arithmetic: $ \begin{array}{cccccccccccccccccccccccccccccccccccc$		a h		✓ Setting up	
Arithmetic: $a^2 = b$					
Arithmetic: $d = a - 1 = b - a$ 2a - 1 = b $2a - 1 = a^2$ $0 = a^2 - 2a + 1$ $0 = (a - 1)^2$ a = 1 b = 1 Nomsa is correct Max 3 / 5 If the candidate only gives Sequence is 1; 1; 1; 1; 1; 1; then 2 / 5 If $ar^{n-1} = a + (n-1)d$ only then 1 / 5 $\sqrt{b} = 2a - 1$ $\sqrt{a} = 1$ $\sqrt{b} = 1$ (5)		- "		$\checkmark a^2 = b$	
$2a-1=b$ $2a-1=a^{2}$ $0=a^{2}-2a+1$ $0=(a-1)^{2}$ $a=1$ $b=1$ If the candidate only gives Sequence is 1; 1; 1; 1; 1; 1; then 2/5 If $ar^{n-1}=a+(n-1)d$ only then 1/5		1			
$2a-1 = a^{2}$ $0 = a^{2} - 2a + 1$ $0 = (a-1)^{2}$ If the candidate only gives Sequence is 1; 1; 1; 1; 1; then 2/5 $a = 1$ $b = 1$ If $ar^{n-1} = a + (n-1)d$ only then 1/5				$\checkmark b = 2a - 1$	
$0 = a^{2} - 2a + 1$ $0 = (a - 1)^{2}$ Sequence is 1; 1; 1; 1; 1; 1; then 2/5 $a = 1$ $b = 1$ If the candidate only gives Sequence is 1; 1; 1; 1; 1; then 2/5 If $ar^{n-1} = a + (n-1)d$ only then 1/5			IVIGA 5 / 5	✓ a = 1	
Sequence is 1; 1; 1; 1; 1; 1; $0 = (a-1)^{2}$ $a = 1$ $b = 1$ Sequence is 1; 1; 1; 1; 1; 1; $then 2/5$ If $ar^{n-1} = a + (n-1)d$ only $then 1/5$			If the candidate only gives		
$0 = (a-1)^{2} $ then 2/5 $a = 1 $ If $ar^{n-1} = a + (n-1)d$ only then 1/5		$0 = a^2 - 2a + 1$		$ \sqrt{b} = 1$	
$a = 1$ $b = 1$ If $ar^{n-1} = a + (n-1)d$ only then $1/5$		$0 = (a-1)^2$	•		(5)
$b = 1$ If $ar^{n-1} = a + (n-1)d$ only then $1/5$		a = 1			(-)
tnen 1/5					
		Sequence is 1; 1; 1;	then 1 / 5		
Nomsa is correct [10]		_			[10]

3.1	-1 + 2 + 5 +		✓ all three terms	
3.1	OR		, an tince terms	(1)
	-1;2;5			(1)
3.2	$S_n = -1 + 2 + 5 + 8 + \text{to } 100 \text{ terms}$			
	$S_{n} = \frac{n}{2} \left[2a + (n-1)d \right]$		\checkmark formula \checkmark $n = 100$	
	$S_{100} = \frac{100}{2} [2(-1) + (100 - 1)(3)]$	Answer only: 4 / 4	✓ substitution	
	= 50[-2 + 297]		✓ answer	
	=14 750		v answer	(4)
	OR $S_n = -1 + 2 + 5 + 8 + \text{ to } 100 \text{ terms}$			[5]
	$T_{100} = 3(100) - 4$			[5]
	= 296			
	$S_{n} = \frac{n}{2} [T_{1} + T_{100}]$			
	$S_{100} = \frac{100}{2} \left[-1 + 296 \right]$			
	= 50[295]	Apply consistent accuracy.		
	=14 750	This is the answer if series is 2 + 5 + 8 +		
	NOTE:	$S_n = 2 + 5 + 8 + to 100 terms$		
	If $S_n = -1 + 2 + 5 + 8 +$ to 99 terms	$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$		
	$S_{n} = \frac{n}{2} \left[2a + (n-1)d \right]$	_		
	$S_{99} = \frac{99}{2} [2(-1) + (99 - 1)(3)]$	$S_{100} = \frac{100}{2} [2(2) + (100 - 1)(3)]$		
	_	= 50[4 + 297]		
	$=\frac{99}{2}[-2+294]$	=15050		
	=14454	Then 4 / 4		
	Then 3 / 4			

4.1	The first differences are $1; -1; -3; -5; \dots$	✓ pattern
	These form a linear pattern	
	$T_n = 1 + (n-1)(-2)$	$\checkmark d = -2$
	=3-2n	✓ answer
	$\mathbf{OR} \ T_n = -2n + 3$	(3)
	ANSWER ONLY: Full marks	
4.2	Between the 35 th and 36 th terms of the quadratic sequence lies the 35 th	
	first difference	✓ substitution of 35
	35^{th} first difference = $3 - 2(35)$	into $T_n = -2n + 3$
	= -67	$\sqrt{\text{answer}}$
		(2)
	OR	(2)
	From the quadratic sequence: $P_{36} = -1158$ and $P_{35} = -1091$	$\checkmark P_{36} = -1158$ and
	35^{th} first difference = $-1158 - (-1091)$	$P_{35} = -1091$
	= - 67	✓ answer
		(2)
	If substitute and get $T_{35} = -2(35) + 3 = -67$	(-)
	and $T_{36} = -2(36) + 3 = -69$, leading to the	
	answer – 2 then 1/2	
4.3	Second difference of terms is -2 .	
	$P_n = an^2 + bn + c$	
	a=-1.	$\checkmark a = -1$
	3a + b = 1 If the general term has	✓ substitution
	-3 + b = 1 been worked out correctly	$\checkmark b = 4$
	b = 4 in 4.2 and not redone in	
	a+b+c=-3 4.3 but answer just written	✓ c = -6
	-1+4+c=-3 down then 4 / 4	(4)
	c = -6	
	$P_n = -n^2 + 4n - 6$	
	OR	

4.3 contd Second difference of terms is -2.

$$P_n = an^2 + bn + c$$

$$a = -1$$
.

$$P_0 = -6 = c$$

$$P_n = -n^2 + bn - 6$$

$$-3 = -(1)^2 + (1)b - 6$$

$$b = 4$$

$$P_n = -n^2 + 4n - 6$$

OR

$$P_n = \frac{n-1}{2} \left[2(\text{first first difference}) + (n-2)(\text{second difference}) \right] + P_1$$

$$P_n = \frac{n-1}{2} [2(1) + (n-2)(-2)] - 3$$

$$P_n = n - 1 - (n - 2)(n - 1) - 3$$

$$P_n = n - 1 - n^2 + 3n - 2 - 3$$

$$P_n = -n^2 + 4n - 6$$

OR

$$P_n = (n-1)P_2 - (n-2)P_1 + 2nd \ difference \frac{(n-1)(n-2)}{2}$$

$$P_n = (n-1)(-2) - (n-2)(-3) - 2\frac{(n-1)(n-2)}{2}$$

$$P_n = -2n + 2 + 3n - 6 - n^2 + 3n - 2$$

$$P_n = -n^2 + 4n - 6$$

OR

$$P_n = \frac{(n-2)(n-3)T_1 - 2(n-1)(n-3)T_2 + (n-2)(n-1)T_3}{2}$$

$$P_n = \frac{(n^2 - 5n + 6)(-3) - 2(n^2 - 4n + 3)(-2) + (n^2 - 3n + 2)(-3)}{2}$$

$$P_n = \frac{-3n^2 + 15n - 18 + 4n^2 - 16n + 12 - 3n^2 + 9n - 6}{2}$$

$$P_n = -n^2 + 4n - 6$$

OR

dali

		Compiled by Navan S	Muda
4.3	$P_2 - P_1 = T_1$		
contd	$P_3 - P_2 = T_2$		
	$P_4 - P_3 = T_3$		
	$P_n - P_{n-1} = T_{n-1}$		
	$P_n - P_1 = T_1 + T_2 + \dots + T_{n-1}$		
	$P_n - P_1 = \frac{n-1}{2} [2(1) + (n-2)(-2)]$		
	$P_n - (-3) = (n-1)(3-n)$		
	$P_n = -n^2 + 4n - 6$		
4.4	Maximum value of T_n is $\frac{4(-1)(-6)-4^2}{4(-1)} = -2$	✓ max value – 2	
	The maximum value is negative and hence the sequence can not have any positive terms as the function is maximum valued	✓ explanation	(2)
	OR		
	$-n^2 + 4n - 6$	✓ max value – 2	
	$=-(n-2)^2+4-6$	✓ explanation	
	$=-(n-2)^2-2$		(2)
	The function has a maximum-value of -2 and therefore the pattern will never have positive values.		
	OR $T_{n} = -n^2 + 4n - 6$		
	n n		
	$\frac{d}{dn}(T_n) = -2n + 4$	✓ max value – 2	
	0 = -2n + 4	√ explanation	(2)
	n=2		(2)
	$T_2 = -(2)^2 + 4(2) - 6$		
	= -2		
	The function has a maximum-value of -2 and therefore the pattern will never have positive values.		
	OR		
	As the sequence decreases from the second term onwards and the second term is negative, the sequence will never have a positive term.	✓✓ answer	
	\mathbf{OR} $T_n = -n^2 + 4n - 6$		(2)
	$\frac{d}{dn}(T_n) = -2n + 4$		
	$\frac{d}{dn}(T_n) < 0$ for $n > 2$ and $T_2 < 0$ so the sequence decreases and stays	✓✓ answer	(2)
	negative		[11]

QUESTION 5

QUI	ESTION	N 5									
5.1	First	First year: 150									
	Seco	Second year: $150 + 18 = 168$									
	Thir	d year:	168 + -	$\frac{8}{(18)} =$	184						
	11111	a year.	100) –	104						
			$(8)^{n-2}$	_							
	Grov	vth = 18	9 8	after n y	ears						✓ general terms
	I		\ /								
	17 th	year gro	wth is 18	8(8)	= 3,08 (em					✓ answer
											(2)
		Yr 1	Yr 2	Yr 3	Yr 4	Yr 5	Yr 6	Yr 7	Yr 8	Yr 9	(2)
	Ht	150	168 18	184	198,2	210,84	222,07	232,06	240,94	248,83	
	Inc		18	16	14,2	12,64	11,23	9,99	8,88	7,89	
		Yr 10	Yr 11	Yr 12	Yr 13	Yr 14	Yr 15	Yr 16	Yr 17		
	Ht	255,84	262,08	267,62	272,55	276,93	280,82	284,28	287,36		
	Inc	-	6,24	5,54	4,93	4,38	3,89	3,46	3,08		
5.2		ht after									
		0+	$(8)^{9}$								
		18 1	$-(\frac{1}{9})$		NO						✓ n = 9
	=15	0+	•				ut 9 teri				✓ substitution
		1	- 0				0 and ar	ıswer			into sum
	_ 15	0 105	9 0760144		corre	ect, full	marks				formula
		0 + 105, 5,88 cm	0/00140	· · · ·	A		- 2/2				
	OR	3,00 CIII			Ans	wer only	7: 2/3				
	OK	(1	- 19)								✓ answer
		$0 + \frac{18\left(\left(\frac{1}{2}\right)^{2}\right)}{\frac{3}{2}}$	$\frac{8}{1}$ -1								(3)
	1.5		9)]								(6)
	=15	0+	3	•							
		9	1 9								
	= 15	= 150 + 105,8768146									
	I	5,88 cm									
5.3		Max height $= 150 + \text{sum to infinity}$								✓ statement	
			= 150 +	. 8							√ substitution
				1							into the sum to
			= 150 ci	m + 162	cm						infinity formula
			= 312 ci		J						✓ max height
	The				eight of	more th	an 312 c	m.			(3)
1		The tree will never reach a height of more than 312 cm.								[8]	

NOTE:

If a candidate answers in 5.1 that the growth is $18\left(\frac{8}{9}\right)^{n-1} = 18\left(\frac{8}{9}\right)^{16} = 2{,}73$ cm then 1/2

The answer for 5.2 as continued accuracy uses n = 10, Height after 10 years

$$=150 + \frac{18\left(1 - \left(\frac{8}{9}\right)^{10}\right)}{1 - \frac{8}{9}} = 150 + 112,11 \dots = 262,11 \text{ cm}$$

This is awarded 3/3 as consistent accuracy

February 2010

QUESTION 2

Consider the following sequence: 399; 360; 323; 288; 255; 224; ...

- 2.1 Determine the n^{th} term T_n in terms of n. (6)
- 2.2 Determine which term (or terms) has a value of 0. (3)
- 2.3 Which term in the sequence will have the lowest value? (1)
 [10]

QUESTION 3

3.1 Prove that:
$$a + ar + ar^2 + ...$$
 (to $n \text{ terms}$) = $\frac{a(r^n - 1)}{r - 1}$, $r \neq 1$ (4)

3.2 Given the geometric series: $3 + 1 + \frac{1}{3} + \dots$ Calculate the sum to infinity. (3)

QUESTION 4

Matli's annual salary is R120 000 and his expenses total R90 000. His salary increases by R12 000 each year while his expenses increase by R15 000 each year. Each year he saves the excess of his income.

- 4.1 Represent his total savings as a series. (4)
- 4.2 If Matli continues to manage his finances this way, after how many years will he have nothing left to save? (3)
- 4.3 Matli calculates that if his expenses increase by x rand every year (instead of R15 000 each year), he will spend as much as he earns in the 25^{th} year. Determine x. (2)

\	; 360 ; 323 ; 288 ; 255 39 -37 -35 -33	✓ 2 nd difference constant
Let T_n	$2 2 2$ $= an^2 + bn + c$	✓ a = 1
Then		
2a = 2 $a = 1$		✓ b+ c = 398
	10 I 200 . I 200	(21) 250
	9: a+b+c=399; b+c=398	$\checkmark 2b + c = 356$ $\checkmark b = -42$
-	50: 4a + 2b + c = 360; 2b + c = 356	$\checkmark c = 440$
b = -4		
c = 440		(6)
$T_n = n^2$	$^{2}-42n+440$	
OR $2a = 2$		
a=1		
$T_2 - T_1$	= -39	✓ 2 nd difference
	b + c - a - b - c = -39	v 2 difference constant
3a+b		$\checkmark a = 1$
3a+b=		
b = -4		√ 3a + b = -39 $ √ b = -42$
		V D = -42
	c = 399	$\checkmark a + b + c = 399$
	+ c = 399	
c = 44		$\checkmark c = 440$
$T_n = n$	$n^2 - 42n + 440$	(6)
OR		
2a = 2		✓ 2 nd difference
<i>a</i> = 1		constant
399-7	$T_0 = -41$	✓ a = 1
$T_0 = 44$	40.	✓ $399 - T_0 = -41$
But T ₀	=c	✓ c = 440
∴ c =	140	√
$T_n = n^2$	$a^2 + bn + 440$	$399 = 1^2 + b(1) + 440$
399 = 1	$a^2 + b(1) + 440$	
399-4	441 = b	✓ b = -42
-42 =	b	
$T_n = n^2$	$\frac{2}{n} - 42n + 440$	
OR		(6)

	Compilea by Navan Muaal
The sequence is $20^2 - 1$; $19^2 - 1$; $18^2 - 1$; $17^2 - 1$;	✓✓ rewriting terms
$T_1 = 20^2 = (20 - 0)^2 - 1$	as squares
$T_2 = 19^2 = (20 - 1)^2 - 1$	✓✓✓ establishing
	that
	$T_n = (20 - (n-1))^2$
$T_n = (20 - (n-1))^2 - 1 = (21 - n)^2 - 1$	$\checkmark T_n = (21 - n)^2$
	(6)
$n^2 - 42n + 440 = 0$	✓ equation
(n-22)(n-20)=0	
n = 22 and $n = 20$	
both terms 22 and 20 have values of 0.	✓✓ answers
	(3)
OR	(3)
$(21-n)^2 - 1 = 0$	
21 - n = 1 or -1	✓ equation
n = 20 or $n = 22$	
	✓✓ answers (3)
-(-42)	(4)
$n = \frac{1}{2(1)}$	
	✓ answer
	(1)
At the 21 term, the lowest value is obtained.	
OR	
2n - 42 = 0	
2n = 42	
n = 21	
	✓ answer
	(1)
OR	
$T_n = (21 - n)^2 - 1$:	
	✓ answer
	(1)
22, 112 10 10 10 10 10 10 10 10 10 10 10 10 10	[10]
	[]
	$T_1 = 20^2 = (20 - 0)^2 - 1$ $T_2 = 19^2 = (20 - 1)^2 - 1$ $T_3 = 18^2 = (20 - 2)^2 - 1$ $T_n = (20 - (n - 1))^2 - 1 = (21 - n)^2 - 1$ $n^2 - 42n + 440 = 0$ $(n - 22)(n - 20) = 0$ $n = 22 \text{ and } n = 20$ both terms 22 and 20 have values of 0. OR $(21 - n)^2 - 1 = 0$ $21 - n = 1 \text{ or } -1$ $n = 20 \text{ or } n = 22$ $n = \frac{-(-42)}{2(1)}$ $n = 21$ At the 21 st term, the lowest value is obtained. OR $2n - 42 = 0$ $2n = 42$ $n = 21$ $\therefore \text{ At the } 21^{st} \text{ term, the lowest value is obtained.}$

3.1	Let $S_n = a + ar + ar^2 + ar^3 + \dots + ar^{n-1} $ (1) Then $r \times S_n = r \left(a + ar + ar^2 + ar^3 + \dots + ar^{n-1} \right)$ $= ar + ar + ar^2 + ar^3 + \dots + ar^{n-1} + ar^n $ (2) $(2) - (1) \text{ gives:}$ $rS_n - S_n = ar^n - a$ $S_n(r-1) = a(r^n - 1)$ $S_n = \frac{a(r^n - 1)}{(r-1)}$	✓ writing S _n as a series ✓ writing r.S _n as a series ✓ subtracting ✓ removing common factors (4)
3.2	$a = 3; r = \frac{1}{3}$ $S_{\infty} = \frac{a}{1-r}$ $= \frac{3}{1-\frac{1}{3}}$ $= \frac{9}{2}$	$\checkmark r = \frac{1}{3}$ \checkmark substitution \checkmark answer (3)

4.1	Term	Income	Expenses	Savings		✓ 30 000	
	1	120 000	90 000	30 000		✓ 27 000	
	2	132 000	105 000	27 000		✓ 24 000	
	3	144 000	120 000	24 000			
	30 000 +	27 000 + 24	000 ++ 0.		-	✓ series	(4)
4.2	Savings	= Income – E	xpenses				
	Income in year $n = 120\ 000 + 12\ 000(n-1)$						
	Expense	s in year $n=9$	90 000 + 15 0	00(n-1)			
	12000	0+12000(n-	-1) = 90000 +	15000(n-1)		√ ✓ equating	
	30000 + 12000n - 12000 = 15000n - 15000						
		330	00 = 3000n				
			n = 11			✓ answer	
	∴ After	11 years.					(3)
	OR						

$a = 30\ 000$ $d = -3000$	✓✓ equation
$T_n = 30000 + (n-1)(-3000)$ 0 = 30000 - 3000n + 3000 3000n = 33000 $\therefore n = 11$ \therefore After 11 years	✓ answer (3)
120000 + 12000(25 - 1) = 90000 + x(25 - 1)	✓ equating
x = 13250	✓ answer (2)
	$T_n = 30000 + (n-1)(-3000)$ $0 = 30000 - 3000n + 3000$ $3000n = 33000$ $\therefore n = 11$ $\therefore \text{ After } 11 \text{ years}$ $120000 + 12000(25 - 1) = 90000 + x(25 - 1)$

November 2010

QUESTION 2

2.1 Evaluate:
$$\sum_{n=1}^{20} 3^{n-2}$$
 (4)

- The following sequence forms a convergent geometric sequence: 5x; x^2 ; $\frac{x^3}{5}$; ...
 - 2.2.1 Determine the possible values of x. (3)

2.2.2 If
$$x = 2$$
, calculate S_{∞} . (2)

- 2.3 The following arithmetic sequence is given: 20; 23; 26; 29; ...; 101
 - 2.3.1 How many terms are there in this sequence? (2)
 - 2.3.2 The even numbers are removed from the sequence.

 Calculate the sum of the terms of the remaining sequence.

 (6)

 [17]

QUESTION 3

The sequence 4; 9; x; 37; ... is a quadratic sequence.

3.1 Calculate
$$x$$
. (3)

3.2 Hence, or otherwise, determine the n^{th} term of the sequence. (4)

2.1	$\sum_{n=1}^{20} 3^{n-2}$ $= \frac{1}{3} + 1 + 3 + \dots \text{ to } 20 \text{ terms}$ $= \frac{\frac{1}{3} (3^{20} - 1)}{3 - 1} ; r = 3; n = 20$ $= \frac{3^{20} - 1}{6}$	Note: The mark for $n = 20$ can be implied in the substitution to the formula	$\sqrt{a} = \frac{1}{3}$ $\sqrt{r} = 3$ $\sqrt{n} = 20$
	Note: If leave only as $ \frac{1}{3} + 1 + 3 + 9 + 27 + 81 + 243 + 59049 + 177147 + 531441 + 14348907 + 43046721 + 12 \text{ only, then } 2 / 4 $ Note: The 20 th term is 387 Answer only: 3 / 4 marks	+ 729 + 2187 + 6561 + 19683 + 1594323 + 4782969 29140163 + 387420489	✓ answer (4)
2.2.1	, x	ote: If $-1 < x < 1$ 1 mark ote: If answer is $-5 \le x \le 5$ then $2/3$	$\checkmark r = \frac{x}{5} \text{ or } \frac{x^2}{5x}$ $\checkmark -1 < r < 1$ $\checkmark \text{ answer}$ (3)
2.2.2	$r = \frac{2}{5}$ and $a = 10$ $S_{\infty} = \frac{10}{1 - \frac{2}{5}}$ $= \frac{50}{3}$ or 16,67		✓ a = 10 ✓ answer (2)

2.3.1	$T_n = 20 + 3(n-1)$
	101 = 20 + (n-1)3
	84 = 3n
	n = 28

OR

$$T_n = 3n + 17$$

$$101 = 3n + 17$$

$$84 = 3n$$

$$n = 28$$

Note: If

$$n = -\frac{17}{3}$$

Then 1 / 2 marks

Answer only: Full marks

$$101 = 20 + 3(n-1)$$

or $101 = 3n + 17$

✓ answer

(2)

√ substitution

√ answer

(2)

2.3.2 23 + 29 + ... to 14 terms

$$= \frac{14}{2}[2(23) + (14 - 1)6] \quad OR \quad \frac{14}{2}[23 + 101]$$

= 868

Note: If "to 14 terms" is left out, do not penalise

Note: If incorrect value for n, max 4/6

Note: If incorrect formula, max 2 / 6 ✓ 23 + 29 + ...

$$\sqrt{a} = 23$$

$$✓ n = 14$$

 $\checkmark d = 6$ or l = 101

✓ substitution into correct formula

√ answer

OR

(6)

OR

Even numbers = 20; 26;...; 98

$$T_n = 6n + 14$$

$$T_n = 6n + 14$$
 $T_n = 20 + (n-1)6$

$$98 = 6n + 14$$

$$98 = 6n + 14$$
 OR
$$98 = 20 + (n - 1)6$$

$$84 = 6n$$

$$84 = 6n$$

$$14 = n$$

$$14 = n$$

$$S_{remaining} = \frac{28}{2} [2(20) + (27)(3)] - \frac{14}{2} [2(20) + (13)(6)]$$

$$= 14(121) - 7(118)$$

$$= 1694 - 826$$

$$= 868$$
Note:

Note:

If the candidate only works out the even numbers i.e. 826, then 3 / 6 marks

If only 1694 max 1 / 6 marks

 $\sqrt{98} = 6n + 14$ or 98 = 20 + (n-1) $\sqrt{14} = n$

✓ substitution into correct formula

√1694

✓ 826

√ answer

(6)

Sequence is

= 868

OR

20; 23; 26; 29; 32; 35; 38; 41; 44; 47; 50; 53; 56; 59; 62; 65; 68; 71; 74; 77; 80; 83; 86; 89; 92; 95; 98; 101 Sum of odd numbers = 23 + 29 + 35 + 41 + 47 + 53 + 59 + 65 + 71 + 77 + 83 + 89 + 95 + 101

Full marks

(6)

[17]

QUESTION 3

5 9

x 37-x-(x-9) 37-x

First difference : 5; x - 9; 37 - x

Second difference : x - 14; -2x + 46

$$x - 14 = 46 - 2x$$

$$3x = 60$$

$$x = 20$$

Note:

Answer only: Full Marks

✓ seconds difference ✓ answer

differences

5; x - 9;

37 - x

✓ first

OR

$$(x-9)+(x-14)=37-x$$

$$2x - 23 = 37 - x$$

$$3x = 60$$

$$x = 20$$

x + (x - 9) + (x - 14) = 37

OR
$$3x - 23 = 37$$

$$3x = 60$$

$$x = 20$$

✓ equating

✓ manipulation

✓ answer

(3)

(3)

(3)

OR

$$(x-9)-5=(37-x)-(x-9)$$

$$x-14 = -2x + 46$$

$$3x = 60$$

$$x = 20$$

- 20

37

differences 5; x - 9;

37 - x

✓ first

✓ equating

✓ answer

3.2

 $\dots T_1$

6

$$2a = 6$$
$$a = 3$$

$$T_n = 3n^2 + bn + c$$

$$3 + b + c = 4$$

$$b + c = 1$$

$$12 + 2b + c = 9$$
 ... T_2

$$2b + c = -3$$

$$...9 + b = 5$$

$$b = -4$$

and

$$c = 4 - (-1) = 5$$

$$T_n = 3n^2 - 4n + 5$$

OR

37

Note:

11

If x is incorrect in 3.1 then

6

max 2 / 4 marks

 $\checkmark a = 3$

✓

 $T_n = 3n^2 + bn + c$

 $\checkmark b = -4$ $\checkmark c = 5$

= 5

(4)

			Compiled by startan	3,20000
			OR	
2a = 6		2a = 6		
a=3		a = 3	✓ a = 3	
$T_0 = 5$		3a + b = 5	✓ c = 5	
c = 5		b = -4		
$T_n = 3n^2 + bn + 5$	OR	a+b+c=4	✓ method	
$4 = 3(1)^2 + b + 5$		3-4+c=4	$\checkmark b = -4$	
b = -4		<i>c</i> = 5		(4)
$T_n = 3n^2 - 4n + 5$		$T_n = 3n^2 - 4n + 5$		
OR				
a+b+c=4i				
$4a + 2b + c = 9 \dots ii$			$\checkmark a = 3$	
16a + 4b + c = 37iii			✓ c = 5	
3a + b = 5		6(n-1)(n-1)	(i-2) $v c = 5$	
12a + 2b = 28		$T_n = 4 + (n-1)5 + \frac{6(n-1)(n-1)}{2}$	✓ method	
6a + b = 14	OR	$= 4 + 5n - 5 + 3n^2 - 9n + 6$	✓ b = -4	
3a = 9		$=3n^2-4n+5$	v b = -4	(4)
a = 3				(.)
b = -4				[7]
c = 5				
$T_n = 3n^2 - 4n + 5$				

February 2011

QUESTION 2

The sequence 3;9;17;27; ... is a quadratic sequence.

- 2.1 Write down the next term. (1)
- 2.2 Determine an expression for the n^{th} term of the sequence. (4)
- 2.3 What is the value of the first term of the sequence that is greater than 269? (4) [9]

QUESTION 3

- 3.1 The first two terms of an infinite geometric sequence are 8 and $\frac{8}{\sqrt{2}}$. Prove, without the use of a calculator, that the sum of the series to infinity is $16+8\sqrt{2}$. (4)
- 3.2 The following geometric series is given: x = 5 + 15 + 45 + ... to 20 terms.
 - 3.2.1 Write the series in sigma notation. (2)
 - 3.2.2 Calculate the value of x. (3)

QUESTION 4

- 4.1 The sum to *n* terms of a sequence of numbers is given as: $S_n = \frac{n}{2}(5n+9)$
 - 4.1.1 Calculate the sum to 23 terms of the sequence. (2)
 - 4.1.2 Hence calculate the 23rd term of the sequence.
- 4.2 The first two terms of a geometric sequence and an arithmetic sequence are the same. The first term is 12. The sum of the first three terms of the geometric sequence is 3 more than the sum of the first three terms of the arithmetic sequence.
 - Determine TWO possible values for the common ratio, r, of the geometric sequence. (6) [11]

(3)

2.1	39	✓ answer	(1)
2.2	3 9 17 27		(1)
2.2			
	6 8 10		
	Let $T_n = an^2 + bn + c$	✓ formula	
	Then	✓ a = 1	
	2a = 2	v a = 1	
	a = 1 $3a + b = 6$		
	3(1) + b = 6 $3(1) + b = 6$	$\checkmark b = 3$ $\checkmark c = -1$	
	b = 3	✓ c = -1	(1)
	a+b+c=3		(4)
	1+3+c=3		
	c = -1		
	$T_n = n^2 + 3n - 1$		
	OR		
	2a = 2		
	a = 1	$\checkmark a = 1$ $\checkmark c = -1$	
	c = 3 - 4 = -1	✓ c=-1	
	$T_n = n^2 + bn - 1$	✓ formula	
	$3 = (1)^2 + b(1) - 1$ (using $T_1 = 3$)		
	b = 3	✓ b = 3	
	$T_n = n^2 + 3n - 1$		(4)
2.3	$n^2 + 3n - 1 > 269$	$\sqrt{n^2 + 3n - 1} > 269$	
	$n^2 + 3n - 270 > 0$	of factors	
	(n+18)(n-15) > 0	✓ factors	
	The first value of n is 16	✓ n = 16	
	The term is $16^2 + 3(16) - 1 = 303$	✓ answer	
			(4)
			[9]

3.1
$$S_{\infty} = 8 + \frac{8}{\sqrt{2}} + \dots$$

$$r = \frac{1}{\sqrt{2}} \quad \text{and}$$

$$S_{\infty} = \frac{a}{1 - r}$$

$$S_{\infty} = \frac{a}{1 - r}$$

$$r = \frac{1}{\sqrt{2}} \quad \text{and}$$

$$s_{\infty} = \frac{a}{1 - r}$$

$$= \frac{8}{1 - \frac{1}{\sqrt{2}}}$$

$$1 - \frac{1}{\sqrt{2}}$$

$$= \frac{8\sqrt{2}}{\sqrt{2} - 1}$$

$$= \frac{8\sqrt{2}(\sqrt{2} + 1)}{(\sqrt{2} - 1)(\sqrt{2} + 1)}$$

$$= 8\sqrt{2}\sqrt{2} + 8\sqrt{2}$$

$$= 16 + 8\sqrt{2}$$

$$(\sqrt{2} - 1)(\sqrt{2} + 1)$$

$$= 8\sqrt{2}\sqrt{2} + 8\sqrt{2}$$

$$= 16 + 8\sqrt{2}$$
OR

$$S_{\infty} = 8 + \frac{8}{\sqrt{2}} + \dots$$

$$r = \frac{1}{\sqrt{2}}$$
 and a

$$s_{\infty} = \frac{a}{1-r}$$
$$= \frac{8}{1 - \frac{1}{\sqrt{2}}}$$

$$=\frac{8\left(1+\frac{1}{\sqrt{2}}\right)}{\left(1-\frac{1}{\sqrt{2}}\right)\left(1+\frac{1}{\sqrt{2}}\right)}$$

$$= \frac{8\left(1 + \frac{1}{\sqrt{2}}\right)}{\frac{1}{2}}$$

$$= 16\left(1 + \frac{1}{\sqrt{2}}\right)$$

$$= 16 + \frac{16\sqrt{2}}{2}$$

$$= 16 + 8\sqrt{2}$$

$$\checkmark r = \frac{1}{\sqrt{2}}$$

$$\checkmark r = \frac{1}{\sqrt{2}}$$

(4)

3.2.1	5 + 15 + 45 + + T ₂₀	✓ ✓ answer	
	$=\sum_{n=1}^{20}5(3)^{n-1}$		(2)
	OR 5 + 15 + 45 + + T ₂₀		
	$= 5\sum_{n=0}^{19} (3)^n$	✓ ✓ answer	(2)
	or OR		(2)
	$5 + 15 + 45 + + T_{20}$	✓ ✓ answer	
	$=5\sum_{i=l}^{l+19}(3)^{i-l} \text{for any } l \in \mathbb{Z}$		(2)
3.2.2	5+15+45++T ₂₀	✓ formula ✓ substitution	
	$=\frac{5(3^{20}-1)}{3-1}$	- suosittuton	
	= 8 716 961 000	✓ answer	(3)
			(3) [9]

4.1.1	$S_{23} = \frac{23}{2}(5(23) + 9)$	✓ substitution	
	= 1426	✓ answer	(2)
4.1.2	$T_{23} = S_{23} - S_{22}$	✓ statement	(2)
	$=1426 - \frac{22}{2}(5(22) + 9)$	✓ S ₂₂ = 1309	
	= 1426 - 1309		
	= 117	✓ answer	(3)
4.2	Arithmetic Sequence: 12 ; $12 + d$; $12 + 2d$ Geometric Sequence: 12 ; $12r$; $12r^2$ 12 + d = 12r		
	d = 12r - 12	✓ equation	
	$12 + 12r + 12r^2 = 12 + 12 + d + 12 + 2d + 3$	✓ equation	
	$12r^2 = 12 + 2(12r - 12) + 3$		
	$12r^2 = 12 + 24r - 24 + 3$		
	$12r^2 - 24r + 9 = 0$	✓ standard form	
	$4r^2 - 8r + 3 = 0$	✓ factors	
	(2r-3)(2r-1) = 0		
	$r = \frac{3}{2} \text{or} r = \frac{1}{2}$	✓ answers	(6)

OR	
The 3^{rd} term of GP = $3 + 3^{rd}$ term of AP	✓ equation
$12r^2 = 3 + 12 + 2d$	✓ equation
$12r^2 = 15 + 24r - 24$	✓ standard form
$12r^2 - 24r + 9 = 0$	
$4r^2 - 8r + 3 = 0$	✓ factors
(2r-3)(2r-1) = 0	✓ answers
$r = \frac{3}{r}$ or $r = \frac{1}{r}$	[11]
2 2 2	

November 2011

QUESTION 2

2.1 Given the sequence: 4; x; 32

Determine the value(s) of x if the sequence is:

2.2 Determine the value of P if
$$P = \sum_{k=1}^{13} 3^{k-5}$$
 (4)

2.3 Prove that for any arithmetic sequence of which the first term is a and the constant difference is d, the sum to n terms can be expressed as $S_n = \frac{n}{2}(2a + (n-1)d)$. (4)

[13]

QUESTION 3

The following sequence is a combination of an arithmetic and a geometric sequence:

- 3.1 Write down the next TWO terms. (2)
- 3.2 Calculate $T_{52} T_{51}$. (5)
- 3.3 Prove that ALL the terms of this infinite sequence will be divisible by 3. (2)
 [9]

QUESTION 4

A quadratic pattern has a second term equal to 1, a third term equal to -6 and a fifth term equal to -14.

- 4.1 Calculate the second difference of this quadratic pattern. (5)
- 4.2 Hence, or otherwise, calculate the first term of the pattern. (2)

QUESTION 2

2.1.1
$$x-4=32-x$$

$$2x = 36$$

$$x = 18$$

OR

$$a = 4$$

$$a + 2d = 32$$

$$2d = 28$$

$$d = 14$$

$$x = 14 + 4$$

$$x = 18$$

OR

$$x = \frac{4+32}{2} = 18$$

Note:

If answer only: award 2/2 marks

Note:

Note:

If only $x = \sqrt{128}$ then

penalty 1 mark

If candidate writes x-4 32-x only (i.e. omits equality): 0/2 marks

$$\checkmark T_2 - T_1 = T_3 - T_2$$

✓ answer

(2)

 $\sqrt{a+2d} = 32 \text{ and } a = 4$

✓ answer

(2)

✓ substitutes correctly into arithmetic mean formula i.e. $\frac{4+32}{2}$

√ answers

(2)

$$\frac{2.1.2}{4} = \frac{32}{x}$$

$$x^2 = 128$$

$$x = \pm \sqrt{128}$$

$$x = \pm 8\sqrt{2}$$
 OR $x = \pm 11{,}31$ OR $x = \pm 2^{\frac{7}{2}}$

Note: If candidate

writes $\frac{x}{4}$ $\frac{32}{x}$ only

(i.e. omits equality): 0/2 marks

$\checkmark \frac{T_2}{T_1} = \frac{T_3}{T_2}$

 $\sqrt{x^2} = 128$

✓ both answers (surd or decimal or exponential form)

(3)

$$a = 4$$

$$r = \frac{\lambda}{4}$$

$$ar^2 = 4\left(\frac{x}{4}\right)^2$$

$$32 = 4\left(\frac{x}{4}\right)^2$$

$$x^2 = 128$$

$$x = \pm \sqrt{128}$$

$$x = \pm 8\sqrt{2}$$
 or $x = \pm 11{,}31$ or $x = \pm 2^{\frac{7}{2}}$

OR

$$x = \pm \sqrt{4 \times 32}$$

$$x = \pm \sqrt{128}$$
 or $x = \pm 8\sqrt{2}$ or $x = \pm 11{,}31$ or $x = \pm 2^{\frac{7}{2}}$

 $\checkmark 32 = 4 \left(\frac{x}{4}\right)^2$

 $\sqrt{x^2} = 128$

✓ both answers (surd or decimal or exponential form)

(3)

✓✓ substitutes correctly into geometric mean formula i.e. $\pm \sqrt{4 \times 32}$ ✓ both answers (surd or decimal or exponential form)

(3)

2.2
$$P = \sum_{k=1}^{13} 3^{k-5}$$

$$= 3^{1-5} + 3^{2-5} + 3^{3-5} + \dots + 3^{13-5}$$

$$= 3^{-4} + 3^{-3} + 3^{-2} + \dots + 3^{8}$$

$$= \frac{3^{-4} (3^{13} - 1)}{3 - 1}$$

$$= 9841,49 \quad \text{or} \quad 9841 \frac{40}{81} \quad \text{or} \quad \frac{797161}{81}$$

Correct answer only: 1/4 marks only

 $\sqrt{a} = 3^{-4} \text{ or } \frac{1}{a}$

 $\sqrt{r} = 3$ √ subs into correct formula

√ answer

(4)

 $P = \sum_{k=0}^{13} 3^{k-5}$ $=3^{1-5}+3^{2-5}+3^{3-5}+\dots+3^{13-5}$ $=3^{-4}+3^{-3}+3^{-2}+4^{-3}$ $=\frac{1}{81}+\frac{1}{27}+\frac{1}{9}+...+6561$

Note: If the candidate rounds off and gets 9841,46 (i.e. correct to one decimal place): DO NOT penalise for the rounding off.

√ ✓ expand the sum √ 13 terms in expansion

√ answer

(4)

=9841,49 or $9841\frac{40}{81}$ or $\frac{797161}{81}$ $S_n = a + [a + d] + [a + 2d] + ... + [a + (n-2)d] + [a + (n-1)d]$ 2.3 $S_n = [a + (n-1)d] + [a + (n-2)d] + ... + [a+d] + a$ $2S_n = [2a + (n-1)d] + [2a + (n-1)d] + \dots + [2a + (n-1)d] + [2a + (n-1)d]$ = n[2a + (n-1)d] $S_n = \frac{n}{2} \left[2a + (n-1)d \right]$

Note: If a candidate uses a specific linear sequence, then NO marks.

✓ writing out S_n √ "reversing" S_n

 \checkmark expressing $2S_n$ ✓ grouping to get $2S_n = n[2a + (n-1)d]$

OR

$$S_{n} = a + [a + d] + [a + 2d] + \dots + (T_{n} - d) + T_{n}$$

$$S_{n} = T_{n} + (T_{n} - d) + \dots + [a + d] + a$$

$$2S_{n} = a + T_{n} + a + T_{n} + a + T_{n} + \dots + a + T_{n}$$

$$= n[a + a + (n - 1)d]$$

$$= [2a + (n - 1)d]$$

$$S_{n} = \frac{n}{2}[2a + (n - 1)d]$$
Note
if a circular is a circular in the circular in the

Note:

If a candidate uses a circular argument (eg $S_{n+1} = S_n + T_n):$ max 1/4 marks (for writing out S_n)

√ writing out S_n ✓ "reversing" S_n

 \checkmark expressing $2S_n$ ✓ grouping to get $2S_n = n[a + a + (n-1)d]$

[13]

3.1	21; 24	Note:		✓ 21 ✓ 24	
			didate writes $T_8 = 21$	V 24	(2)
		$T_7 = 1$	24 : award 1/2 marks		
3.2	$T_{2k} = 3.2^{k-1}$			✓ 3.2 ^{k-1}	
	and so $T_{52} = 3.2^{26-1} = 100663296$		Note: If candidate writes out all 52 terms and	$\checkmark T_{52}$ $\checkmark 6k - 3$	
	$T_{2k-1} = 3 + 6(k-1) = 6k - 3$ and so $T_{51} = 6(26) - 3 = 153$		gets correct answer: award 5/5 marks	✓ T ₅₁	
	$T_{52} - T_{51} = 100663296 - 153$			✓ answer	
	=100663143 OR		Note: If candidate used $k = 52$: max 2/5		(5)
	Consider sequence <i>P</i> : 3; 6; 12 $P_n = 3.2^{n-1}$ $P_{26} = 3.2^{26-1} = 100663296$		Note: if candidate interchanges order i.e. does $T_{51} - T_{52}$: max 4/5 marks	$\checkmark P_n = 3.2^{n-1}$ $\checkmark P_{26}$ $\checkmark Q_n = 6n - 3$	
	Consider sequence $Q: 3; 9; 15 \dots$ $Q_n = 6n - 3$			✓ Q ₂₆	
	$Q_{26} = 6(26) - 3 = 153$		Note: writes out all 52 terms and		
	$T_{52} - T_{51} = P_{26} - Q_{26}$		subtracts $T_{51} - T_{52}$:		
	=100663296-153 =100663143		max 4/5 marks	✓ answer	(5)

3.3 For all
$$n \in \mathbb{N}$$
, $n = 2k$ or $n = 2k - 1$ for some $k \in \mathbb{N}$

If
$$n = 2k$$
:

$$T_n = T_{2k} = 3.2^{k-1}$$

If
$$n = 2k - 1$$
:

$$T_n = T_{2k-1}$$
$$= 6k - 3$$

$$=3(2k-1)$$

In either case, T_n has a factor of 3, so is divisible by 3.

Note:

If a candidate only illustrates divisibility by 3 with a specific finite part of the sequence, not the general term: 0/2 marks

✓ factors
$$3.2^{k-1}$$

✓ factors 3(2k-1)

✓ factors 3.2^{n-1}

 \checkmark factors 3(2n-1)

(2)

OR

$$P_n = 3.2^{n-1}$$

Which is a multiple of 3

$$Q_n = 6n - 3$$
$$= 3(2n - 1)$$

Which is also a multiple of 3

which is also a multiple of 3

Since $T_n = Q_{2k-1}$ or $T_n = P_{2k}$ for all $n \in \mathbb{N}$, T_n is always divisible by 3

OR

The odd terms are odd multiples of 3 and the even terms are 3 times a power of 2. This means that all the terms are multiples of 3 and are therefore divisible by 3.

✓ odd multiples of 3

✓ 3 times a power of 2

(2) [9]

(2)

The second, third, fourth and fifth terms are $1 : -6 : T_4$ and -14

First differences are: -7; T_4+6 ; $-14-T_4$ So T_4 + 6 + 7= -14 - 2 T_4 - 6

 $T_4 = -11$

$$d = -11 + 6 + 7 = 2$$
 or $-14 + 22 - 6 = 2$

$$-14 + 22 - 6 = 2$$

Note: Answer only (i.e. d = 2) with no working:

Note: Candidate gives $T_4 = -11$ and d = 2 only: award 5/5 marks

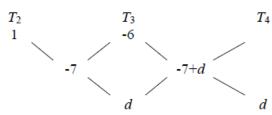
$$\checkmark - 7$$
 $\checkmark T_4 + 6$
 $\checkmark - 14 - T_4$

√ setting up equation

 $T_5 - T_2 = (T_5 - T_4) + (T_4 - T_3) + (T_3 - T_2)$ ✓ answer

(5)

OR



 $T_5 - T_2 = (T_5 - T_4) + (T_4 - T_3) + (T_3 - T_2)$ -15 = (-7 + 2d) + (-7 + d) + -7-15 = -21 + 3d6 = 3d

d = 2

 T_5 -14

Note: Candidate uses trial and error and shows this: award 5/5 marks

✓ - 7 $\sqrt{-7+d}$ $\sqrt{-7+2}d$

√ setting up equation

 $T_5 - T_2 = (T_5 - T_4) + (T_4 - T_3) + (T_3 - T_2)$ √ answer

(5)

OR

$$4a + 2b + c = 1$$

$$9a + 3b + c = -6$$

$$5a + b = -7$$

25a + 5b + c = -14

$$16a + 2b = -8$$

$$10a + 2b = -14$$

$$6a = 6$$

$$a = 1$$

$$d=2a=2$$

 $\checkmark 4a + 2b + c = 1$ $\sqrt{9a+3b+c} = -6$

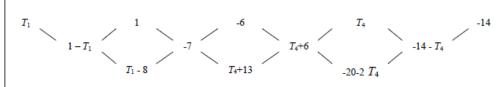
 $\sqrt{25a+5b+c} = -14$

✓ solved simultaneously

√ answer

(5)

OR



 $T_4 + 13 = -20 - 2T_4$

$$3T_4 = -33$$

$$T_4 = -11$$

$$d = -11 + 13$$

$$d = 2$$

 $\sqrt{T_4 + 6}$ $\checkmark -14-T_4$

√ setting up equation √ answer

(5)

$$T_1$$
 x
 T_2
 T_3
 T_4
 T_5
 T_5
 T_6
 T_7
 T_9
 T_9
 T_{1}
 T_{2}
 T_{3}
 T_{4}
 T_{7}
 T_{9}
 T_{1}
 T_{1}
 T_{2}
 T_{3}
 T_{4}
 T_{7}
 T_{9}
 T_{1}
 T_{1}
 T_{2}
 T_{3}
 T_{4}
 T_{7}
 T_{9}
 T_{1}
 T_{1}
 T_{2}
 T_{3}
 T_{4}
 T_{7}
 T_{9}
 T_{1}
 T_{2}
 T_{3}
 T_{4}
 T_{7}
 T_{9}
 T_{1}
 T_{2}
 T_{3}
 T_{4}
 T_{4

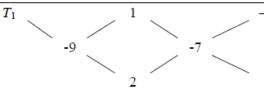
$$\checkmark y + 6$$
 $\checkmark -14 - y$

$$y+13 = -20 - 2y$$
$$3y = -33$$
$$y = -11$$

✓ setting up equation ✓ answer

Second difference = y + 13 = -11 + 13 = 2

4.2 T



✓ method

Note: Answer only: award 2/2 marks

 $\checkmark T_1 = 10$ (2)

(5)

$$T_1 = 10$$

OR

$$a = 1$$

$$5a + b = -7$$

$$5(1) + b = -7$$

$$b = -12$$

$$a + b + c = 1$$

$$4(1) + 2(-12) + c = 1$$

Note: If incorrect d in 4.1, 2/2 CA marks for $T_1 = d + 8$ (since

 $1 - T_1 = -7 - d$)

✓ method

$$T_n = n^2 - 12n + 21$$

$$T_1 = (1)^2 - 12(1) + 21$$

$$\checkmark T_1 = 10$$

OR

$$T_4 + 13 = -8 + T_1$$
 $y + 13 = -8 + x$
 $-11 + 13 = -8 + T_1$ **OR** $-11 + 13 = -8 + x$
 $T_1 = 10$ $x = 10$

✓
$$T_1 = 10$$

(2) [7]

(2)

February 2012

QUESTION 2

Given the arithmetic series: -7 - 3 + 1 + ... + 173

- 2.1 How many terms are there in the series? (3)
- 2.2 Calculate the sum of the series. (3)
- 2.3 Write the series in sigma notation. (3)
 [9]

QUESTION 3

- Consider the geometric sequence: 4; −2; 1...
 - 3.1.1 Determine the next term of the sequence. (2)
 - 3.1.2 Determine n if the n^{th} term is $\frac{1}{64}$. (4)
 - 3.1.3 Calculate the sum to infinity of the series 4-2+1... (2)
- 3.2 If x is a REAL number, show that the following sequence can NOT be geometric:

1;
$$x + 1$$
; $x - 3$... (4) [12]

QUESTION 4

An athlete runs along a straight road. His distance d from a fixed point P on the road is measured at different times, n, and has the form $d(n) = an^2 + bn + c$. The distances are recorded in the table below.

Time (in seconds)	1	2	3	4	5	6
Distance (in metres)	17	10	5	2	r	S

- 4.1 Determine the values of r and s. (3)
- 4.2 Determine the values of a, b and c. (4)
- 4.3 How far is the athlete from P when n = 8? (2)
- Show that the athlete is moving towards P when n < 5, and away from P (4) when n > 5.

QUESTION 2

2.1	$T_n = a + (n-1)d$ $173 = -7 + (n-1)(4)$	✓ d = 4
	173 = -7 + (n-1)(4) $173 = -7 + 4n - 4$	$\checkmark T_n = -7 + 4(n-1)$
	4n = 184	
	n = 46	✓ answer (3)
	OR	(3)
	$T_n = 4n - 11$	$\checkmark \checkmark T_n = 4n - 11$
	173 = 4n - 11	n
	4n = 184	✓ answer
	n = 46	(3)
2.2	$S_n = \frac{n}{2}[a+l]$	\checkmark subs of $n = 46$
	$=\frac{46}{2}[-7+173]$	✓ subs of a and l into the correct
	= 23[166]	formula
	= 3 818	✓ answer
		(3)
	OR	
	$S_n = \frac{n}{2} [2a + (n-1)d]$	✓ subs of <i>n</i> = 46
	$=\frac{46}{2}[2(-7)+(45)(4)]$	✓ subs of a and d
	= 23[-14+180]	into the correct
	= 3818	formula
	- 5 616	✓ answer
		(3)
2.3	46	✓ n = 1
	$\sum_{n=1}^{\infty} (4n-11)$	✓ top value = 46
		✓ 4n – 11
		(3) [9]
	1	L L L

QUESTION 3

3.1.1	$r = -\frac{1}{2}$	$\checkmark r = -\frac{1}{}$
	$T_4 = 1 \left(-\frac{1}{2} \right)$	$\checkmark r = -\frac{1}{2}$ \checkmark answer
		(2)
	$=-\frac{1}{2}$	
3.1.2	$T_n = 4\left(-\frac{1}{2}\right)^{n-1}$ $T_n = -8\left(-\frac{1}{2}\right)^n$	$\checkmark 4\left(-\frac{1}{2}\right)^{n-1}$
	$\frac{1}{64} = 4\left(-\frac{1}{2}\right)^{n-1}$ $\frac{1}{64} = -8\left(-\frac{1}{2}\right)^{n}$	$\checkmark \frac{4}{2}$ \checkmark substitution
	$\frac{1}{256} = \left(-\frac{1}{2}\right)^{n-1} \qquad \text{OR} \qquad \frac{1}{256} = \left(-\frac{1}{2}\right)^{n}$	1 (1) ⁿ⁻¹
	$\left(-\frac{1}{2}\right)^{8} = \left(-\frac{1}{2}\right)^{n-1} \qquad \left(-\frac{1}{2}\right)^{8} = \left(-\frac{1}{2}\right)^{n-1}$	$\checkmark \frac{1}{256} = \left(-\frac{1}{2}\right)^{n-1}$
	8 = n - 1 $8 = n - 1$	
	n = 9 $n = 9$	✓ answer (4)
	OR	
	$T_4 = -\frac{1}{2}$	
	$T_5 = \frac{1}{4}$	✓ T ₅ and T ₆
	$T_6 = -\frac{1}{8}$	✓ T ₇
	$T_7 = \frac{1}{16}$	✓ T ₈
	$T_8 = -\frac{1}{32}$	
	$T_9 = \frac{1}{64}$	✓ answer (4)
2.1.2	n = 9	
3.1.3	$S_{\infty} = \frac{a}{1 - r}$	✓ substitution into correct formula
	$=\frac{4}{1-\left(-\frac{1}{2}\right)}$	✓ answer (2)
	$=\frac{8}{3}$	(2)

3.2 For a geometric sequence:

$$\frac{x+1}{1} = \frac{x-3}{x+1}$$

$$x^2 + 2x + 1 = x - 3$$

$$x^2 + x + 4 = 0$$

$$x = \frac{-1 \pm \sqrt{1 - 4(1)(4)}}{2(1)}$$

$$x = \frac{-1 \pm \sqrt{-15}}{2}$$

$$x^2 + 2x + 1 = x - 3$$

$$x^2 + x + 4 = 0$$

$$(x + \frac{1}{2})^2 + \frac{15}{4} = 0$$

$$(x + \frac{1}{2})^2 + \frac{15}{4} \ge \frac{15}{4} > 0$$

Solution is non-real.

There is no x-value that makes the sequence geometric.

OR

For a geometric sequence:

$$\frac{x+1}{1} = \frac{x-3}{x+1}$$

$$x^2 + 2x + 1 = x - 3$$

$$x^2 + x + 4 = 0$$

$$b^2 - 4ac = 1 - 4(1)(4)$$

$$= -15$$

Solution is non-real

There is no x-value that makes the sequence geometric.

$$\checkmark \frac{T_2}{T_1} = \frac{T_3}{T_2}$$

√ standard form

✓ subs in quadratic formula

✓ non-real/no xvalues

(4)

$$\checkmark \frac{T_2}{T_1} = \frac{T_3}{T_2}$$

✓ standard form

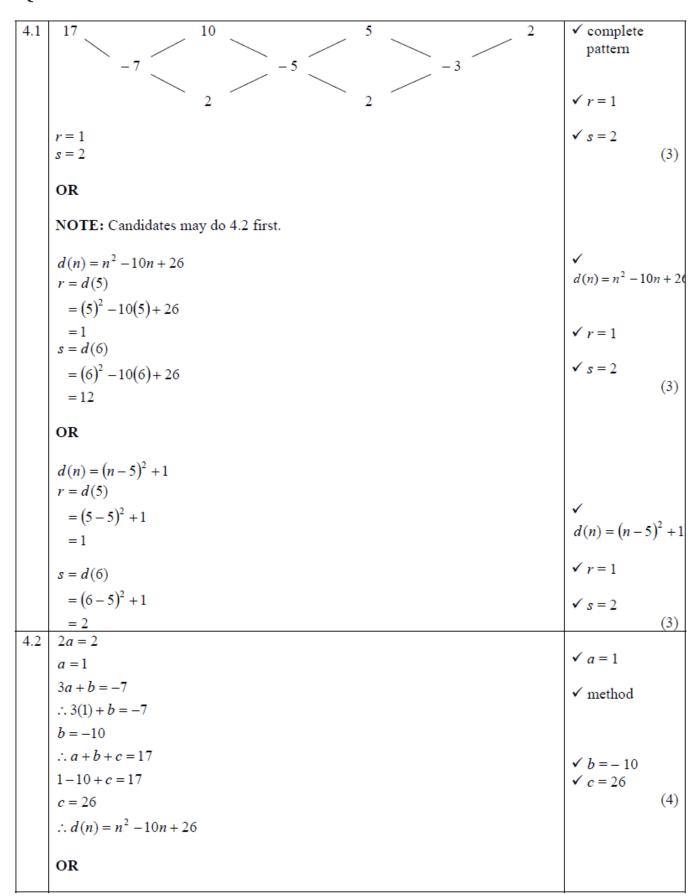
✓ subs in discriminant

✓ non-real/no xvalues

(4)

[12]

QUESTION 4



$$\begin{array}{c} a+b+c=17\\ 4a+2b+c=10\\ 3a+b=-7\\ 9a+3b=-21\\ 9a+3b+c=5\\ -21+c=5\\ c=26\\ a+b=-9\\ 4a+2b=-16\\ 2a+2b=-18\\ 2a=2\\ a=1\\ b=-10\\ d(n)=n^2-10n+26\\ \end{array} \qquad \begin{array}{c} a+b+c=17\\ 4a+2b+c=10\\ 3a+b=-10\\ 3a+b=-5\\ 3a+b=-7\\ 5a+b=-5\\ 2a=2\\ (1)-10+c=17\\ c=26\\ d(n)=n^2-10n+26\\ \end{array} \qquad \begin{array}{c} \checkmark \text{ method}\\ \checkmark a=1\\ \checkmark c=26\\ \checkmark b=-10\\ (4)\\ \checkmark a=1\\ \checkmark c=26\\ \checkmark b=-10\\ (4)$$

$$2a = 2$$

$$a = 1$$

$$c = 26$$

$$d(n) = n^2 + bn + 26$$
 $\checkmark \text{ method}$

$$\checkmark c = 26$$

$$17 = (1)^{2} + b + 26$$
$$b = -10$$

$$d(n) = n^2 - 10n + 26 \tag{4}$$

OR

$$d(n) = \frac{n-1}{2} [2(\text{first difference}) + (n-2)(\text{second difference})] + d(1)$$

$$d(n) = \frac{n-1}{2} [2(-7) + (n-2)(2)] + 17$$

$$d(n) = \frac{n-1}{2} [-18 - 2n] + 17$$

$$d(n) = (n-1)(-9 - n) + 17$$

$$d(n) = n^2 - 10n + 26$$

$$(4)$$

OR

		ompuea by stavan mu
	$d(n) = (n-1)d(2) - (n-2)d(1) + second difference \times \frac{(n-1)(n-2)}{2}$	✓ method
	$d(n) = (n-1)(10) - (n-2)(17) + \frac{2(n-1)(n-2)}{2}$	\checkmark inethod \checkmark $a = 1$ \checkmark $c = 26$
	d(n) = 10n - 10 - 17n + 34 + (n-1)(n-2)	$\checkmark b = -10$
	$d(n) = n^2 - 10n + 26$	(4)
	OR	
	$d(n) = (n-5)^2 + 1$	✓ method ✓ a = 1
	$=n^2-10n+26$	$\checkmark c = 26$
	a = 1	✓ b = - 10
	b = -10	(4)
	c = 26	
4.3	$d(8) = (8)^2 - 10(8) + 26$ = 10 m OR By symmetry	✓ subs $t = 8$
	d(8)	✓ answer
	= d(5+3)	(2
	=d(5-3)	
	=d(2)	✓ method
	= 10	✓ answer
		(2
	OR 17, 10, 5, 2, 1, 2, 5, 10	
	so $d(8) = 10$	✓ method ✓ answer
	36 4(6) 13	(2
4.4	Since the distance from P is decreasing for $n \le 5$ the athlete is moving towards F	o. ✓✓ decreasing
	Since the distance from P is increasing for $n \ge 5$, the athlete is moving away from P.	
	P.	✓✓ increasing Moving away
	OR	Woving away
	It is sufficient to show that d is decreasing when $n \le 5$ and increasing when $n \ge 3$ $d(n) = n^2 - 10n + 26$	5 🗸
	d'(n) = 2n - 10	d'(n) = 2n - 10
	d'(n) = 2(n-5)	
	For $n < 5$, $2(n-5) < 0$	$\checkmark 2(n-5) < 0$
	d'(n) < 0: decreasing	✓ decreasing
	For $n > 5$, $2(n-5) > 0$	
	d'(n) > 0: increasing	/ in
		✓ increasing (4
		[13]

November 2012

QUESTION 2

- 3x + 1; 2x; 3x 7 are the first three terms of an arithmetic sequence. Calculate the 2.1 value of x. (2)
- The first and second terms of an arithmetic sequence are 10 and 6 respectively. 2.2
 - Calculate the 11th term of the sequence. 2.2.1

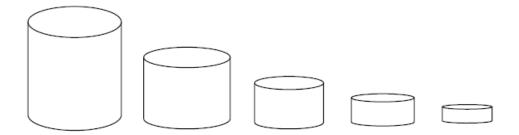
(2)

The sum of the first n terms of this sequence is -560. Calculate n. 2.2.2

(6) [10]

QUESTION 3

- 3.1 Given the geometric sequence: 27;9;3...
 - 3.1.1 Determine a formula for T_n , the n^{th} term of the sequence. (2)
 - 3.1.2 Why does the sum to infinity for this sequence exist? (1)
 - 3.1.3 Determine S_{∞} . (2)
- Twenty water tanks are decreasing in size in such a way that the volume of each tank is $\frac{1}{2}$ the volume of the previous tank. The first tank is empty, but the other 19 tanks are full of water.



- Would it be possible for the first water tank to hold all the water from the other 19 tanks? Motivate your answer. (4)
- 3.3 The n^{th} term of a sequence is given by $T_n = -2(n-5)^2 + 18$.
 - 3.3.1 Write down the first THREE terms of the sequence. (3)
 - 3.3.2 Which term of the sequence will have the greatest value? (1)
 - 3.3.3 What is the second difference of this quadratic sequence? (2)
 - 3.3.4 Determine ALL values of n for which the terms of the sequence will be less than -110. (6)

QUESTION 2

2.1	$T_2 - T_1 = T_3 - T_2$	$\checkmark T_2 - T_1 = T_3 - T_2$
	2x - (3x + 1) = (3x - 7) - 2x	or
	2x - 3x - 1 = 3x - 7 - 2x	2x - (3x + 1) = (3x - 7) - 2x
	-x-1=x-7	
	-2x = -6	✓ answer
	x = 3	(2)
	OR	
	$T_2 = \frac{T_1 + T_3}{2}$	$\checkmark T_2 = \frac{T_1 + T_3}{2}$
	_	_
	$2x = \frac{(3x+1)+(3x-7)}{2}$	or $2x = \frac{(3x+1)+(3x-7)}{2}$
	4x = 6x - 6	_
	6 = 2x	
	x = 3	✓ answer (2)
		(2)
	OR	$\checkmark T_3 - T_1 = 2(T_2 - T_1)$ or
	$T_3 - T_1 = 2(T_2 - T_1)$	(3x-7)-(3x+1)=2(2x-(3x+1))
	(3x-7)-(3x+1)=2(2x-(3x+1))	
	-8 = -2x - 2	
	2x = 6	
	x = 3	
	x = 3	✓ answer (2)
2.2.1	$T_n = a + (n-1)d$	(2)
	$T_{11} = 10 + (11 - 1)(-4)$	$\checkmark d = -4$
	=-30	✓ answer
		(2)
	OR	
	10; 6; 2; -2; -6; -10; -14; -18; -22; -26; -30	d ownered a second
	$\therefore T_{11} = -30$	✓ expands sequence ✓ answer
	**	(2)

2.2.2

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$-560 = \frac{n}{2} [2(10) + (n-1)(-4)]$$

$$-1120 = -4n^2 + 24n$$

$$4n^2 - 24n - 1120 = 0$$

$$n^2 - 6n - 280 = 0$$

$$(n-20)(n+14) = 0$$

$$n = 20 \quad \text{or} \quad -14$$

 $\therefore n = 20$ only

Note: if candidate substitutes into incorrect formula, award 0/6

 \checkmark subs $S_n = -560$

✓ correct formula

 \checkmark substitution of a and d

 $\checkmark -4n^2 + 24n + 1120 = 0$ or $4n^2 - 24n - 1120 = 0$ or $n^2 - 6n - 280 = 0$

√ factors

✓ selects n = 20 only (6)

OR

$$S_n = \frac{n}{2} [2a + (n-1)d]$$
$$-560 = \frac{n}{2} [2(10) + (n-1)(-4)]$$

 $-560 = \frac{n}{2} [2(10) + (n-1)(-4)]$ answer only, award 1/6 marks

 $-1120 = -4n^2 + 24n$ $4n^2 - 24n - 1120 = 0$

$$n = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(1)(-280)}}{2(1)}$$

$$n = 20$$
 or -14

 $\therefore n = 20$ only

 $n^2 - 6n - 280 = 0$

Note: if candidate writes ✓ correct formula

 \checkmark substitution of a and d ✓ subs $S_{n} = -560$

$$\sqrt{4n^2 - 24n - 1120} = 0$$
 or $-4n^2 + 24n + 1120 = 0$ or $n^2 - 6n - 280 = 0$

✓ subs into correct formula

✓ selects n = 20 only (6)

OR

$$S_n = \frac{n}{2} [2a + (n-1)d]$$
$$-560 = \frac{n}{2} [2(10) + (n-1)(-4)]$$
$$-560 = \frac{20n}{2} - \frac{4n^2}{2} + \frac{4n}{2}$$

$$2n^2 - 12n - 560 = 0$$
$$n^2 - 6n - 280 = 0$$

$$(n-20)(n+14) = 0$$

 $n = 20$ or -14
 $\therefore n = 20$ only

√ correct formula

 \checkmark substitution of a and d \checkmark subs $S_n = -560$

$$\sqrt{2n^2 - 12n - 560} = 0$$
 or $-2n^2 + 12n + 560 = 0$ or $n^2 - 6n - 280 = 0$

√ factors

✓ selects n = 20 only

OR

$$S_{11} = -110$$

11	12			1	l	ı	l .		20
T_n	-34	-38	-42	-46	-50	-54	-58	-62	-66
S_n	-144	-182	-224	-270	-320	-374	-432	-494	-560

$$\therefore n = 20$$

$$\checkmark S_{11} = -110$$

✓ sequence expanded ✓✓ series calculated

✓✓ answer

(6) [10]

QUEST	ION 3		
3.1.1	$T_n = ar^{n-1}$ $= 27\left(\frac{1}{3}\right)^{n-1}$	Note: The final answer can also be written as 3^{4-n} or $\left(\frac{1}{3}\right)^{n-4}$	✓ $a = 27$ and $r = \frac{1}{3}$ ✓ substitute into correct formula (2)
3.1.2	$-1 < r < 1$ or $ r < 1$ OR The common ratio (r) is $\frac{1}{2}$	Note: If candidate concludes series is not convergent, award 0 marks. which is between -1 and 1.	✓ answer (1) ✓ answer (1)
	OR $-1 < \frac{1}{3} < 1$		✓ answer (1)
3.1.3	$S_{\infty} = \frac{a}{1 - r}$ $= \frac{27}{1 - \frac{1}{3}}$ $= \frac{81}{2} \text{ or } 40,5 \text{ or } 41$	Note: If $r > 1$ or $r < -1$ is substituted then $0/2$ marks.	✓ substitution ✓ answer (2)

3.2 Let V be the volume of the first tank.

$$\frac{\nu}{2}; \frac{\nu}{4}; \frac{\nu}{8}....$$

$$S_{19} = \frac{\frac{V}{2} \left[1 - \left(\frac{1}{2}\right)^{19} \right]}{1 - \frac{1}{2}}$$
524287

$$=\frac{524287}{524288}V$$

= 0,9999980927 V

< V

Note: If candidate lets the volume of the first tank be a specific value (instead of a variable) and his/her argument follows correctly, award 4/4 marks

Note: If candidate answers 'Yes' only with no justification: 1/4 marks

 $\sqrt{\frac{V}{2}}$

✓ substitute into correct formula

√ answer

✓ conclusion

(4)

OR

Let V be the volume of the first tank.

$$\frac{\nu}{2}$$
; $\frac{\nu}{4}$; $\frac{\nu}{8}$

$$S_{19} = \frac{\frac{V}{2} \left[1 - \left(\frac{1}{2}\right)^{19} \right]}{1 - \frac{1}{2}}$$

$$= V \left[1 - \left(\frac{1}{2}\right)^{19} \right]$$

 $< V \cdot 1$

Yes, the water will fill the first tank without spilling over.

Yes, the water will fill the first tank without spilling over.

 $\sqrt{\frac{v}{2}}$

√ substitute into correct formula

✓ observes that

$$\left\lceil 1 - \left(\frac{1}{2}\right)^{19} \right\rceil < 1$$

✓ conclusion

(4)

Let V be the volume of the first tank.

$$\frac{\nu}{2}; \frac{\nu}{4}; \frac{\nu}{8}....$$

OR

$$S_{\infty} = \frac{\frac{V}{2}}{1 - \frac{1}{2}}$$

Since the first tank will hold the water from infinitely many tanks without spilling over, certainly:

Yes, the first tank will hold the water from the other 19 tanks without spilling over.

 $\sqrt{\frac{V}{2}}$

✓ substitute into correct formula

✓✓ correct argument

(4)

		Compiled by Navan Mud
	OR	
	If the tanks are emptied one by one, starting from the second, each tank will fill only half the remaining space, so the first tank can hold all the water from the other 19 tanks.	✓ Yes (explicit or understood from the argument.) ✓ ✓ ✓ argument
3.3.1	$T_n = -2(n-5)^2 + 18$	(4,
0.0.1	$I_n = -2(n-3) + 10$ Term 1 = -14 Term 2 = 0	✓ -14 ✓ 0
	Term 3 = 10	✓ 10 (3)
3.3.2	Term 5 OR $n = 5$ OR T_5	✓ answer (1)
3.3.3	Second difference = $2a$	\checkmark subs – 2 into 2a
3.3.3	Second difference = $2(-2)$ Second difference = -4	✓ answer (2)
	OR	
	-14 0 10	
	14 10	✓ first differences
	-4	✓ second difference
	Second difference = -4	(2
3.3.4	$-2(n-5)^2 + 18 < -110$ $-2(n-5)^2 + 128 < 0$ Note: Answer only award 2/6 marks	$T_n < -110$
	$-2n^2 + 20n - 50 + 128 < 0$ $-2n^2 + 20n + 78 < 0$	✓ standard form ✓ factors
	$n^{2} - 10n - 39 > 0$ $(n-13)(n+3) > 0$	✓ critical values
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	✓ inequalities
	$n \ge 14$; $n \in \mathbb{N}$ OR $n > 13$; $n \in \mathbb{N}$	$\sqrt{n} > 13$ (accept: $n \ge 14$)
	OR	(6

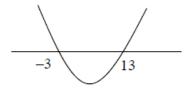
$$-2(n-5)^{2} + 18 < -110$$

$$-2(n-5)^{2} + 128 < 0$$

$$(n-5)^{2} - 64 > 0$$

$$[(n-5) - 8][(n-5) + 8] > 0$$

$$(n-13)(n+3) > 0$$



$$n < -3$$
 or $n > 13$
 $n \ge 14$; $n \in \mathbb{N}$ **OR** $n > 13$; $n \in \mathbb{N}$

OR

$$-2(n-5)^{2} + 18 < -110$$

$$-2(n-5)^{2} < -128$$

$$(n-5)^{2} > 64$$

$$n-5 < -8 \text{ or } n-5 > 8$$

$$n < -3 \text{ or } n > 13$$

 $n \ge 14$; $n \in \mathbb{N}$ **OR** n > 13; $n \in \mathbb{N}$

OR

$$T_n = -2(n-5)^2 + 18$$
$$T_n = -2n^2 + 20n - 32$$

$$-2n^{2} + 20n - 32 < -110$$

$$-2n^{2} + 20n - 78 < 0$$

$$n^{2} - 10n - 39 > 0$$

$$(n-13)(n+3) > 0$$

n < -3 or n > 13

 $n \ge 14$; $n \in \mathbb{N}$ **OR** n > 13; $n \in \mathbb{N}$

OR

$$-14$$
 ; 0 ; 10 ; 16 ; 18 ; 16 ; 10 ; 0 ; -14 ; -32 ; -54 ; -80 ; -110 $n \ge 14$; $n \in \mathbb{N}$

$$\sqrt{(n-5)^2-64}>0$$

√ factors

✓ critical values

√ inequalities

$$\sqrt{n} > 13$$

(accept: $n \ge 14$)

(6)

$$T_n < -110$$

$$\checkmark 2(n-5)^2 > 128$$

$$\checkmark$$
 8 and − 8

$$√ n - 5 > 8$$

✓
$$n-5 < -8$$

$$\checkmark n > 13$$

(accept: $n \ge 14$)

 $T_n < -110$

✓standard form

√ factors

√ critical values

√ inequalities $\sqrt{n} > 13$

(accept: $n \ge 14$)

(6)

✓✓✓✓ expansion

√ ✓ conclusion of

 $n \ge 14$

(accept n > 13)

(6)[21]

February 2013

QUESTION 2

- 2.1 Given the geometric series: 256 + p + 64 32 + ...
 - 2.1.1 Determine the value of p. (3)
 - 2.1.2 Calculate the sum of the first 8 terms of the series. (3)
 - 2.1.3 Why does the sum to infinity for this series exist? (1)
 - 2.1.4 Calculate S_m (3)
- 2.2 Consider the arithmetic sequence: -8; -2; 4; 10; ...
 - 2.2.1 Write down the next term of the sequence. (1)
 - 2.2.2 If the n^{th} term of the sequence is 148, determine the value of n. (3)
 - 2.2.3 Calculate the smallest value of n for which the sum of the first n terms of the sequence will be greater than 10 140. (5)
- 2.3 Calculate $\sum_{k=1}^{30} (3k+5)$ (3)

QUESTION 3

Consider the sequence: 3;9;27;...

Jacob says that the fourth term of the sequence is 81.

Vusi disagrees and says that the fourth term of the sequence is 57.

- Explain why Jacob and Vusi could both be correct.
- 3.2 Jacob and Vusi continue with their number patterns.

Determine a formula for the n^{th} term of:

3.2.2 Vusi's sequence (4)

QUESTION 2

2.1.1	$r = -\frac{32}{64} = -\frac{1}{2}$	$\checkmark -\frac{1}{2}$ \checkmark substitution
	$p = 256\left(-\frac{1}{2}\right)$ $p = -128$	✓ answer (3)

OR

$$\frac{p}{256} = \frac{64}{p}$$

$$p^{2} = 16384$$

$$p = \pm 128$$

$$p = -128$$

$$\sqrt{\frac{p}{256}} = \frac{64}{p}$$

$$\sqrt{p} = \pm 128$$

$$\sqrt{\text{answer}}$$

OR

OR
$$\frac{p}{256} = \frac{-32}{64}$$

$$64p = 8192$$

$$p = -128$$

$$\sqrt{\frac{p}{256}} = \frac{-32}{64}$$

$$\checkmark \text{ simplification}$$

$$\checkmark \text{ answer}$$
(3)

OR

$$\frac{1}{r} = \frac{64}{-32} = -2$$

$$p = -2 \times 64$$

$$p = -128$$

$$\sqrt{\frac{1}{r}} = \frac{64}{-32} = -2$$

$$\sqrt{\text{simplification}}$$

$$\sqrt{\text{answer}}$$
(3)

2.1.2

$$S_n = \frac{a[1 - r^n]}{1 - r}$$

$$S_8 = \frac{256 \left[1 - \left(-\frac{1}{2}\right)^8\right]}{1 + \frac{1}{2}}$$

$$= \frac{512}{3} \left(\frac{255}{256}\right)$$

$$= 170$$

✓ formula

√ substitution

√ answer

(3)

(3)

	2100 21202202020000	Complica by Maran Mada
	$S_n = \frac{a[1 - r^n]}{1 - r}$	✓ formula
	$S_8 = \frac{2^8 \left[1 - \left(-\frac{1}{2} \right)^8 \right]}{1 + \frac{1}{2}}$	✓ substitution
	$= \frac{2^9}{3} \left(\frac{255}{2^8} \right)$ = 170	✓ answer
2.1.3	-1< <i>r</i> <1	√ answer
2.1.0	OR	(1)
	The common ratio is $-\frac{1}{2}$ which is between -1 and 1 .	✓ answer (1)
	$ \begin{array}{l} \mathbf{OR} \\ -1 < -\frac{1}{2} < 1 \end{array} $	✓ answer (1)
2.1.4	$S_{\infty} = \frac{a}{1 - r}$	✓ formula
	$=\frac{256}{1-\left(-\frac{1}{2}\right)}$	✓ substitution
	$= \frac{512}{3}$ = 170,67	✓ answer (3)

2.2.1	16	/
2.2.1	16	✓ answer
2.2.2	77 0 c/ 1)	(1)
2.2.2	$T_n = -8 + 6(n-1)$	✓ substitution into equation
	148 = 6n - 14	$\sqrt{T_n} = 148$
	6n = 162	✓answer
	n = 27	(3)
	n-21	
2.2.3	$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$	ns
	2	$\sqrt{\frac{n}{2}}[2(-8)+(n-1)(6)]$
	$\frac{n}{2}[2(-8)+(n-1)(6)] > 10140$	$\checkmark 3n^2 - 11n > 10140$
	$3n^2 - 11n > 10140$	
	$3n^2 - 11n - 10140 > 0$	
	(3n+169)(n-60)>0	√ factors
	When $n = 60$, $S_n = 10 140$	$\sqrt{n} = 60$
	Smallest $n = 61$	✓ answer
		(5)
2.3	$\sum_{k=1}^{30} (3k+5)$	
	a = 8 $n = 30$ $d = 3$	✓ n = 30
	$\sum_{k=1}^{30} (3k+5) = \frac{30}{2} [2(8) + 29(3)]$	✓ substitution into correct formula
	= 15(103)	✓ answer
		(3)
	= 1545	[22]

QUESTION 3

3.1	Jacob calculated that the sequence is geometric or exponential. Vusi calculated that the sequence is quadratic.	✓ Jacob (geometric/exponential) ✓ Vusi (quadratic) (2)
	OR	
	Jacob has multiplied each term by 3 to get the next term. Vusi sees it as a sequence with a constant second difference.	✓ Jacob (multiplied each term by 3) ✓ Vusi (constant second difference) (2)
	OR Jacob calculated that the sequence is geometric or	✓ Jacob (geometric/exponential)
	exponential. Vusi calculated that the sequence can be seen as a combination of exponential and cubic sequences.	✓ Vusi (exponential and cubic combined) (2)
3.2.1		✓answer
3.2.1	$T_n = 3^n$	(1)
	OR	
	$T_n = 3.3^{n-1}$	
		✓answer (1)
3.2.2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$2a = 12 3a + b = 6 a + b + c = 3$ $a = 6 18 + b = 6 6 - 12 + c = 3$ $b = -12 c = 9$ $T_n = 6n^2 - 12n + 9$	\checkmark a = 6 \checkmark method \checkmark b = −12 \checkmark c = 9 (4)
	OR	
	$2a = 12$ $a = 6$ $T_0 = c = 9$ $T_n = an^2 + bn + 9$ $3 = 6(1)^2 + b(1) + 9$	✓ a = 6 ✓ c = 9 ✓ method
	$b = -12$ $T_n = 6n^2 - 12n + 9$	$\checkmark b = -12 \tag{4}$
// \	OR	

$$2a = 12$$

$$a = 6$$

$$T_n = 6n^2 + bn + c$$

$$T_1 = 3 = 6(1)^2 + b(1) + a$$

$$T_1 = 3 = 6(1)^2 + b(1) + c$$
 i.e. $3 = 6 + b + c$
 $T_2 = 9 = 6(2)^2 + b(2) + c$ i.e. $9 = 24 + 2b + c$

i.e.
$$3 = 6 + b + a$$

$$= 6(2)^2 + b(2) + c$$

$$\frac{9 = 24 + 2b + c}{6 = 18 + b}$$

$$b = -12$$

$$c = 9$$

$$T_n = 6n^2 - 12n + 9$$

$$✓ b = -12$$

$$\checkmark c = 9$$

 $\checkmark a = 6$

✓ method

OR

$$T_n = 3^n + k(n-1)(n-2)(n-3)$$

$$57 = 3^4 + k(3)(2)(1)$$

$$6k = -24$$

$$k = -4$$

$$T_n = 3^n - 4(n-1)(n-2)(n-3)$$

$$T_n = 3^n + k(n-1)(n-2)(n-3)$$

√ substitution

(4)

(4)

November 2013

QUESTION 2

2.1 Given the geometric sequence: 7; x; 63; ...

Determine the possible values of x. (3)

2.2 The first term of a geometric sequence is 15. If the second term is 10, calculate:

$$T_{10}$$
 (3)

$$2.2.2 S_9 (2)$$

2.3 Given: $0; -\frac{1}{2}; 0; \frac{1}{2}; 0; \frac{3}{2}; 0; \frac{5}{2}; 0; \frac{7}{2}; 0; \dots$

Assume that this number pattern continues consistently.

- 2.3.1 Write down the value of the 191st term of this sequence. (1)
- 2.3.2 Determine the sum of the first 500 terms of this sequence. (4)

2.4 Given: $\sum_{k=2}^{20} (4x-1)^k$

2.4.1 Calculate the first term of the series
$$\sum_{k=2}^{20} (4x-1)^k$$
 if $x=1$. (2)

2.4.2 For which values of
$$x$$
 will $\sum_{k=1}^{\infty} (4x-1)^k$ exist? (3)

QUESTION 3

- 3.1 Given the arithmetic sequence: -3; 1; 5; ...; 393
 - 3.1.1 Determine a formula for the n^{th} term of the sequence. (2)
 - 3.1.2 Write down the 4^{th} , 5^{th} , 6^{th} and 7^{th} terms of the sequence. (2)
 - 3.1.3 Write down the remainders when each of the first seven terms of the sequence is divided by 3. (2)
 - 3.1.4 Calculate the sum of the terms in the arithmetic sequence that are divisible by 3. (5)
- 3.2 Consider the following pattern of dots:

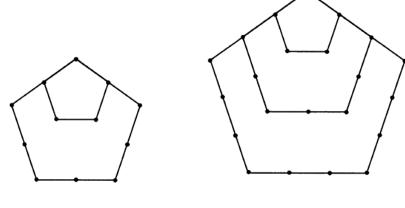


FIGURE 1 FIGURE 2

FIGURE 3

FIGURE 4

If T_n represents the total number of dots in FIGURE n, then $T_1 = 1$ and $T_2 = 5$. If the pattern continues in the same manner, determine:

3.2.1
$$T_5$$
 (2)

3.2.2
$$T_{50}$$
 (5) [18]

QUESTION/VRAAG 2

2.1 Given geometric sequence: 7; x; 63 ...

$$\frac{T_2}{T_1} = \frac{T_3}{T_2}$$

$$\frac{x}{7} = \frac{63}{x}$$

$$x^2 = 441$$

$$x = \pm 21$$

$$\checkmark \frac{T_2}{T_1} = \frac{T_3}{T_2} / \frac{x}{7} = \frac{63}{x}$$

 $\checkmark x^2 = 441$

✓ both answers

(3)

OR

Given geometric sequence: 7; x; 63 ...

$$\frac{T_2}{T_1} = \frac{T_3}{T_2}$$

$$\frac{x}{7} = \frac{63}{x}$$

$$x^2 = 441$$

$$\checkmark \frac{T_2}{T_1} = \frac{T_3}{T_2} / \frac{x}{7} = \frac{63}{x}$$

 $\checkmark x^2 = 441$

$$x^{2} - 441 = 0$$
$$(x - 21)(x + 21) = 0$$

✓ both answers

(3)

OR

$$63 = 7r^2$$

$$r^2 = 9$$

$$r = \pm 3$$

$$x = \pm 21$$

✓ $63 = 7r^2$

$$\checkmark r^2 = 9$$

✓ both answers

(3)

2.2.1

$$r = \frac{10}{15} = \frac{2}{3}$$

 $T_n = ar^{n-1}$

$$T_{10} = 15 \left(\frac{2}{3}\right)^{10-1}$$

$$= \frac{2560}{6561} \quad \text{or} \quad 0,39$$

NOTE:

If the candidate rounds off early and gets r = 0.67, then $T_{10} = 0.41$:

3/3 marks

 $\checkmark r = \frac{2}{3}$

✓ correct subs into correct formula

✓answer

(3)

$$\checkmark r = \frac{2}{3}$$

✓ expansion of the series

✓answer

(3)

OR

$$r = \frac{10}{15} = \frac{2}{3}$$

Expansion of the series

$$15 + 10 + \frac{20}{3} + \frac{40}{9} + \frac{80}{27} + \frac{160}{81} + \frac{320}{243} + \frac{640}{729} + \frac{1280}{2187} + \frac{2560}{6561}$$

$$T_{10} = \frac{2560}{6561}$$

		Compiled by Navan Mudal
	$S_{n} = \frac{a(r^{n} - 1)}{r - 1}$ $S_{9} = \frac{15\left(\left(\frac{2}{3}\right)^{9} - 1\right)}{\frac{2}{3} - 1}$	✓ correct substitution into correct formula
	$\frac{3}{3} - 1$ $= \frac{95855}{2187}$ $= 43,83$	✓answer (2)
	OR $S_{n} = \frac{a(1-r^{n})}{1-r}$ $15\left(1-\left(\frac{2}{r}\right)^{9}\right)$	
	$S_9 = \frac{15\left(1 - \left(\frac{2}{3}\right)^9\right)}{1 - \left(\frac{2}{3}\right)}$ $= \frac{95855}{2187}$	✓ substitution into correct formula ✓ answer
2.3.1	$ \begin{array}{c} 2187 \\ = 43,83 \\ \hline T_{191} = 0 \end{array} $	✓ answer (2)
2.0.1	1 ₁₉₁ – V	(1)
2.3.2	Since the sum of all odd-positioned terms will be zero, need only consider the sum of the even-positioned terms, which form an arithmetic sequence, i.e. the sum of 250 even terms: Omdat die som van al die terme in onewe posisies nul is, slegs nodig om die som van die terme in ewe posisies te oorweeg, wat 'n rekenkundige ry vorm, m.a.w. die som van 250 ewe terme:	
	$S_{500} = \frac{250}{2} \left[2 \left(-\frac{1}{2} \right) + (250 - 1)(1) \right]$ = 31000 NOTE: Breakdown: If $n = 500$ with $a = -\frac{1}{2}$ and $d = 1$	$ √n = 250 $ $ √a = -\frac{1}{2} \text{ and } d = 1 $ $ √ \text{ substitution into correct formula} $ $ √ \text{ answer} $
	OR $S_{500} = \frac{125[2(-1) + 249(2)]}{2}$ = 31000	\checkmark n = 125 \checkmark a = -1 and d = 2 \checkmark subs into correct formula \checkmark answer (4)
	OR	

		Compuea by Navan Muaan
	$\frac{3}{2} + \frac{5}{2} + $ to 248 terms	✓ n = 248
	$=124\left[\frac{3}{2} + \frac{497}{2}\right]$	✓ subs into correct formula
	$=124 \times 250$	$\sqrt{\frac{3}{2} + \frac{247}{2}}$
	= 31000	✓ answer
		(4)
	OR	
	$\frac{3}{2} + \frac{5}{2} + $ to 248 terms	✓n = 248
		✓ subs into correct formula
	= 124[3 + 247]	✓ 3 + 247
	$= 124 \times 250$	✓ answer
	= 31000	(4)
	OR	
	Sum = 0 + 4 + 8 +to 125 terms = $\frac{125}{2}$ [0 + (125 - 1)4] = 31000	$\checkmark n = 125$ $\checkmark a = 0$ and $d = 4$ \checkmark subs into correct formula \checkmark answer (4)
2.4.1	$T_1 = (4(1)-1)^2$ = 3^2 NOTE: If $k = 1$, $T_1 = 3$: max 1/2 mark	✓ subs $x = 1$ and $k = 2$
	= 9	✓ answer (2)
2.4.2	r = 4x - 1	$\checkmark r = 4x - 1$
	-1 < r < 1 NOTE:	
	$-1 < 4x - 1 < 1$ Incorrect $r : \max 1/3 \text{ marks}$	$\checkmark -1 < 4x - 1 < 1$
	If candidate only writes down $4x - 1$	
	and does nothing else: $0/3$ marks	✓ answer
	$0 < x < \frac{1}{2}$	(3)
		[18]

February 2014

QUESTION 2

2.1 A geometric sequence has $T_3 = 20$ and $T_4 = 40$.

Determine:

2.1.2 A formula for
$$T_n$$
 (3)

2.2 The following sequence has the property that the sequence of numerators is arithmetic and the sequence of denominators is geometric:

$$\frac{2}{1}$$
; $\frac{-1}{5}$; $\frac{-4}{25}$; ...

- 2.2.1 Write down the FOURTH term of the sequence. (1)
- 2.2.2 Determine a formula for the n^{th} term. (3)
- 2.2.3 Determine the 500th term of the sequence. (2)
- 2.2.4 Which will be the first term of the sequence to have a NUMERATOR which is less than -59? (3)

 [13]

QUESTION 3

3.1 Given the arithmetic sequence: w-3; 2w-4; 23-w

3.1.1 Determine the value of w. (2)

3.1.2 Write down the common difference of this sequence. (1)

The arithmetic sequence 4; 10; 16; ... is the sequence of first differences of a quadratic sequence with a first term equal to 3.

Determine the 50th term of the quadratic sequence. (5)

QUESTION 4

In a geometric series, the sum of the first n terms is given by $S_n = p \left(1 - \left(\frac{1}{2} \right)^n \right)$ and the sum to infinity of this series is 10.

4.1 Calculate the value of p. (4)

4.2 Calculate the second term of the series. (4)

[8]

QUESTION 2/VRAAG 2

2.1.1	$T_3 = 20$ and $T_4 = 40$	
	$r = \frac{T_4}{T_3} = 2$	✓ answer (1)
2.1.2	$T_n = ar^{n-1}$ $20 = a \cdot 2^{3-1}$ a = 5 $T_n = 5 \cdot 2^{n-1}$	✓ subs into correct formula $\checkmark a = 5$ \checkmark answer (3)
	OR $40 = a.2^{4-1}$ a = 5 $T_n = 5.2^{n-1}$	✓ subs into correct formula $\checkmark a = 5$ \checkmark answer (3)
2.2.1	$\frac{-7}{125}$	✓ answer (1)
2.2.2	$T_n = \frac{2 + (n-1)(-3)}{(1) \cdot 5^{n-1}}$ $T_n = \frac{5 - 3n}{5^{n-1}}$	$\begin{array}{c} \checkmark 5 \\ \checkmark 5^{n-1} \\ \checkmark -3n \end{array}$ (3)
2.2.3	$T_n = \frac{5 - 3n}{5^{n-1}}$ $T_{500} = \frac{5 - 3(500)}{5^{499}}$ $= \frac{-1495}{5^{499}}$	✓ numerator ✓ denominator (2)
2.2.4	5-3n < -59 -3n < -64 n > 21,333 n = 22	\checkmark 5-3n<-59 \checkmark n>21,333 \checkmark n = 22 (3) [13]

QUESTION/VRAAG 3

3.1.1	w-3; 2w-4; 23-w	(2 4) (2)
	(2w-4)-(w-3)=(23-w)-(2w-4)	(2w-4)-(w-3) = (23-w)-(2w-4)
	w - 1 = 27 - 3w	
	4w = 28	$\checkmark_W = 7$
	w = 7	(2)
3.1.2	Sequence is: 4; 10; 16	
	First difference / Eerste verskil = 6	✓ answer
		(1)
	OR	
	d=w-1	
	=6	✓ answer
		(1)
3.2	$T_{50} = 3 + (4 + 10 + 16 + \dots \text{ to } 49 \text{ terms})$	$T_{50} = 3 + \text{sum of } 49$
	T 2 49 [2(4) + (40 1)(6)]	linear terms
	$T_{50} = 3 + \frac{49}{2} [2(4) + (49 - 1)(6)]$	$\checkmark a = 4$
	=3+7252	$\checkmark n = 49$
	= 7255	✓ 7252(sum of 49 terms)
		✓ answer
		(5)
	OR	
	2a = 6	
	a=3	$\checkmark a = 3$ $\checkmark b = -5$
	3a + b = 4	v <i>b</i> = = 3
	3(3)+b=4	
	b = -5	
	a+b+c=3	✓ c = 5
	3-5+c=3	✓ substitution 50
	c = 5	✓ substitution 50 ✓ answer
	$T_n = 3n^2 - 5n + 5$	- answer
	$T_{50} = 3(50)^2 - 5(50) + 5$	
		(5)
	= 7255	[8]

QUESTION/VRAAG 4

QUE	SHON/VRAAG 4	
4.1	$S_n = p \left(1 - \left(\frac{1}{2} \right)^n \right)$ $a = p \left[1 - \left(\frac{1}{2} \right)^1 \right]$ $= \frac{p}{2}$ $r = \frac{1}{2}$	$\checkmark a = \frac{p}{2}$ $\checkmark r = \frac{1}{2}$
	$\therefore 10 = \frac{\frac{p}{2}}{1 - \frac{1}{2}}$ $5 = \frac{p}{2}$ $p = 10$	✓ substitute in correct formula ✓ answer
	OR $\left(\frac{1}{2}\right)^n \to 0 \text{ as } n \to \infty$ $\therefore S_{\infty} = p$ $p = 10$	(4)
4.2	$r = \frac{1}{2}$ $\frac{a}{1 - \frac{1}{2}} = 10$ $a = 5$ $T_2 = ar = \frac{5}{2}$	$✓ r = \frac{1}{2}$ $✓ \text{ substitution}$ $✓ a = 5$ $✓ \text{ answer}$
	OR	

(4)

$$S_{n} = 10 - 10.2^{-n}$$

$$a = T_{1}$$

$$= S_{1}$$

$$= 10 - 10.2^{-1}$$

$$= 10 - \frac{10}{2}$$

$$= 5$$

$$T_{2} = S_{2} - T_{1}$$

$$= 10 - 10.2^{-2} - 5$$

$$= 10 - \frac{10}{4} - 5$$

$$= \frac{5}{2}$$

$$\checkmark S_{1} = 5$$

$$\checkmark a = 5$$

$$\checkmark T_{2} = S_{2} - T_{1}$$

$$\checkmark \text{ answer}$$

OR

$$T_2 = S_2 - S_1$$

$$= p \left(1 - \left(\frac{1}{2} \right)^2 \right) - p \left(1 - \frac{1}{2} \right)$$

$$= \frac{p}{4}$$

$$= \frac{10}{4}$$

$$= \frac{5}{2}$$

$$\checkmark T_2 = S_2 - S_1$$

$$\checkmark \text{ substitution}$$

$$\checkmark \frac{p}{4}$$

$$\checkmark \text{ answer}$$

$$\checkmark \text{ answer}$$

$$(4)$$
[8]

November 2014

QUESTION 2

Given the arithmetic series: 2 + 9 + 16 + ... (to 251 terms).

- 2.1 Write down the fourth term of the series. (1)
- 2.2 Calculate the 251st term of the series. (3)
- 2.3 Express the series in sigma notation. (2)
- 2.4 Calculate the sum of the series. (2)
- 2.5 How many terms in the series are divisible by 4? (4) [12]

QUESTION 3

- 3.1 Given the quadratic sequence: -1; -7; -11; p; ...
 - 3.1.1 Write down the value of p. (2)
 - 3.1.2 Determine the n^{th} term of the sequence. (4)
 - 3.1.3 The first difference between two consecutive terms of the sequence is 96.

 Calculate the values of these two terms. (4)
- 3.2 The first three terms of a geometric sequence are: 16; 4; 1
 - 3.2.1 Calculate the value of the 12th term. (Leave your answer in simplified exponential form.) (3)
 - 3.2.2 Calculate the sum of the first 10 terms of the sequence. (2)
- 3.3 Determine the value of: $\left(1 + \frac{1}{2}\right)\left(1 + \frac{1}{3}\right)\left(1 + \frac{1}{4}\right)\left(1 + \frac{1}{5}\right)$... up to 98 factors. (4)

QUESTION/VRAAG 2

2.1	$T_4 = 23$	√23 (1)
2.2	$T_{251} = a + (n-1)d$	$\checkmark a = 2 \text{ and } d = 7$
	=2+(251-1)(7)	✓ subst. into correct
	=1752	formula /subt. in
	-1732	korrekte formule
2.3	251	√1752 (3) √ general term/
2.3	$\sum_{n=1}^{\infty} (7n-5)$	algemene term
	n-1	✓ complete answer
	OR/OF	/volledige antwoord (2)
	OR/OF	
	250	✓ general term/
	$\sum_{n=0}^{250} (7p+2)$	algemene term
	p=0	✓ complete answer /
2.4	10	volledige antwoord (2)
2.4	$S_n = \frac{n}{2} [a+l]$	
	$S_n = \frac{251}{2} [2 + 1752]$	✓ substitution/substitusie
	= 220127	(220127 (2)
	- 220127	√220127 (2)
	OR/OF	
	$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$	
	$=\frac{251}{2}[2(2)+(251-1)(7)]$	✓ substitution/substitusie
	= 220127	√220127 (2)
2.5	The new series/ <i>Die nuwe reeks</i> is 16 + 44 + 72 ++1 752	√√ generating new
	16 + 28(n-1) = 1752	series divisible by 4/
	1736 = 28(n-1)	vorming van nuwe reeks deelbaar deur 4
	62 = n - 1	$\checkmark T_n = 1752$
	n = 63	$\checkmark 63 \tag{4}$
	n = 0.5	(4)
	OR/OF	
	2 + 9 + <u>16</u> + 23 + 30 + 37 + <u>44</u> + 51 + + <u>1752</u>	
	T ₃ is divisible by /is deelbaar deur 4	$\checkmark T_3$ is divisible by 4/
	Then T_7 , T_{11} , T_{15} ,, T_{251} are divisible by 4, thus each 4 th	is deelbaar deur 4
	term is divisible by 4.	✓ identifying terms
	Daarna is T_7 , T_{11} , T_{15} ,, T_{251} deelbaar deur 4, d.w.s. elke 4 ^{de}	divisible by 4/
	term is deelbaar deur 4.	identifiseer terme deelbaar deur 4
	∴ number of terms divisible by 4 will be = $\frac{251-3}{4}+1=63$	✓ reasoning/redenering
	∴ aantal terme deelbaar deur 4 sal wees = $\frac{251-3}{4}+1=63$	√63 (4)
	4	
	OR/OF	I

$T_n = 4n - 1 = 251$ $4n = 252$ $n = 63$	\checkmark ✓ generating sequence involving position of terms/vorming van reeks i.t.v. posisie van terme $\checkmark T_n = 251$ $\checkmark 63$ (4)
	[12]

(2)

QUESTION/VRAAG 3

$$p + 11 - (-4) = 2$$

$$p + 15 = 2$$

$$p = -13$$

$$\sqrt{p} + 15 = 2$$

$$\sqrt{p} = -13$$

OR/OF

$$n+11=-2$$

$$p+11=-2$$
$$p=-13$$

✓ first differences/ eerste verskille

$$\checkmark p = -13 \tag{2}$$

$$3.1.2 \quad 2a = 2$$

$$a = 1$$

$$\checkmark a = 1$$

$$3a + b = -6$$

$$3(1) + b = -6$$

$$b = -9$$

$$√b = -9$$

$$a+b+c=-1$$

$$1-9+c=-1$$

$$c = 7$$

$$T_n = n^2 - 9n + 7$$

$$\checkmark c = 7$$

✓ answer/antwoord

(4)

OR/OF

$$T_n = T_1 + (n-1)d_1 + \frac{(n-1)(n-2)d_2}{2}$$

$$= -1 + (n-1)(-6) + \frac{(n-1)(n-2)(2)}{2}$$

$$= -1 - 6n + 6 + \frac{2n^2 - 6n + 4}{2}$$

$$= n^2 - 9n + 7$$

√ formula/formule

✓ substitution of first and second differences/substitusie van eerste en tweede verskille

√ simplification/vereenvoudiging

✓ answer/antwoord (4)

OR/OF

$$T_0 = 7 = c$$

$$2a = 2 \therefore a = 1$$

$$3a + b = -6 \therefore b = -9$$

$$T_n = n^2 - 9n + 7$$

n

OR/OF

$$a = \frac{1}{2}(2) = 1$$

$$\therefore T_n = n^2 + bn + c$$

$$T_1 = -1 \therefore 1 + b + c = -1 \dots (1)$$

$$T_2 = -7 \therefore 4 + 2b + c = -7 \dots (2)$$

$$(2) - (1): \quad 3 + b = -6$$

$$\therefore b = -9$$
sub in (1): $c = 7$

$$\therefore T_n = n^2 - 9n + 7$$

✓ c-value/c-waarde

✓ a-value/a-waarde ✓ b-value/b-waarde

√answer/antwoord

(4)

✓ a-value/a-waarde

✓ b-value/b-waarde ✓ c-value/c-waarde

√answer/antwoord

(4)

		Compilea by Nava	ii Jilui
3.1.3	The sequence of first differences is/Die reeks van eerste		
	verskille is:		
	-6;-4;-2;0;		
	-6+(n-1)(2) = 96	\checkmark - 6+(n - 1)(2) =	= 96
	n = 52	√52	
	∴ two terms are/twee terme is:		
	$T_{52} = 52^2 - 9(52) + 7 = 2243$		
	$T_{53} = 53^2 - 9(53) + 7 = 2339$	✓2 243 ✓2 339	(4)
	OR/OF		
	The sequence of first differences is/Die reeks van eerste verskille is:		
	-6;-4;-2;0;		
	The formula for the sequence of first differences/Die formule		
	vir die reeks van eerste verskille is $T_n = 2n - 8$	$\sqrt{2n-8} = 96$	
	1^{st} difference/ I^{ste} verskil: $2n - 8 = 96$		
	2n = 104		
	n = 52	√52	
	∴ two terms are/twee terme is:	(2.242	
	$T_{52} = 52^2 - 9(52) + 7 = 2243$	√2 243 √2 339	(4)
	$T_{53} = 53^2 - 9(53) + 7 = 2339$	V 2 339	(4)
	OR/OF		
	$T_n - T_{n-1} = 96$	$\checkmark T_n - T_{n-1} = 96$	
	$(n^2 - 9n + 7) - [(n-1)^2 - 9(n-1) + 7] = 96$		
	$n^2 - 9n + 7 - n^2 + 2n - 1 + 9n - 9 - 7 = 96$		
	2n = 106		
	n = 53	√53	
	$T_{52} = 52^2 - 9(52) + 7 = 2243$	√2 243	
	52	√2 339	(4)
	$T_{53} = 53^2 - 9(53) + 7 = 2339$	V 2 339	(+)
	OR/OF		
	$T_{n+1} - T_n = 96$	$\sqrt{T_{n+1}} - T_n = 96$	
	$[(n+1)^2 - 9(n+1) + 7] - [n^2 - 9n + 7] = 96$	n+1 n	
	$n^2 + 2n + 1 - 9n - 9 + 7 - n^2 + 9n - 7 = 96$		
	2n = 104		
	n = 52	√52	
	$T_{52} = 52^2 - 9(52) + 7 = 2243$	(2.2.2	
	22	√2 243 √2 220	
	$T_{53} = 53^2 - 9(53) + 7 = 2339$	√2 339	(4)
			(4)

Compiled by Navan Mud	ali
-----------------------	-----

		Compiled by Navan Mudali
3.2.1	$T_{12} = 16\left(\frac{1}{4}\right)^{12-1}$	$\checkmark a = 16 \text{ and } r = \frac{1}{4}$
	$= \frac{1}{4^9} \text{or} 4^{-9} \text{or} \frac{1}{2^{18}} \text{or} 2^{-18}$	✓ subst. into correct formula/ subt in korrekte formule
		✓ answer/antwoord (3)
3.2.2	$16\left(1-\left(\frac{1}{4}\right)^{10}\right)$	✓ substitution into correct formula
	$S_{10} = \frac{16\left(1 - \left(\frac{1}{4}\right)^{10}\right)}{1 - \frac{1}{4}}$	/substitusie in korrekte formule
	= 21,33	✓ answer/antwoord (2)
	OR/OF	
	$S_{10} = \frac{16\left(\left(\frac{1}{4}\right)^{10} - 1\right)}{\frac{1}{4} - 1}$	✓ substitution into correct formula /substitusie in
	4	korrekte formule
	= 21,33	✓ answer/antwoord (2)
3.3	$\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)\left(1+\frac{1}{99}\right)$	✓ improper fractions/ onegte breuke
	$= \left(\frac{\mathcal{S}}{2}\right) \left(\frac{\mathcal{A}}{\mathcal{S}}\right) \left(\frac{\mathcal{S}}{\mathcal{S}}\right) \left(\frac{\mathcal{S}}{\mathcal{S}}\right) \dots \left(\frac{100}{99}\right)$	$\checkmark \left(1 + \frac{1}{99}\right) \text{ or } \left(\frac{100}{99}\right)$
	$=\left(\frac{100}{2}\right)$	
	= 50	✓✓ answer/antwoord (4)
	OR/OF $ \left(1 + \frac{1}{2}\right) \left(1 + \frac{1}{3}\right) \left(1 + \frac{1}{4}\right) \left(1 + \frac{1}{99}\right) $	$\checkmark\left(1+\frac{1}{99}\right)$
	$T_1 = \left(1 + \frac{1}{2}\right) = \frac{3}{2}$	
	$T_2 = \frac{3}{2} \left(1 + \frac{1}{3} \right) = \frac{3}{2} \times \frac{4}{3} = 2$	✓ giving the first three terms / gee die eerste drie terme
	$T_3 = 2\left(1 + \frac{1}{4}\right) = 2 \times \frac{5}{4} = \frac{5}{2}$	
	$\frac{3}{2}$, 2, $\frac{5}{2}$ is an arithmetic sequence with $a = \frac{3}{2}$ and $d = \frac{1}{2}$	
	$T_{98} = \frac{3}{2} + (98 - 1)\frac{1}{2}$	
<	$=\frac{100}{2}=50$	√√answer /antwoord (4)
		[19]

тиде 13 0J **103**

November 2014 Exemplar

QUESTION 2

- 2.1 Given the arithmetic series: 18 + 24 + 30 + ... + 300
 - 2.1.1 Determine the number of terms in this series. (3)
 - 2.1.2 Calculate the sum of this series. (2)
 - 2.1.3 Calculate the sum of all the whole numbers up to and including 300 that are NOT divisible by 6.
 (4)
- 2.2 The first three terms of an infinite geometric sequence are 16, 8 and 4 respectively.
 - 2.2.1 Determine the n^{th} term of the sequence. (2)
 - 2.2.2 Determine all possible values of n for which the sum of the first n terms of this sequence is greater than 31. (3)
 - 2.2.3 Calculate the sum to infinity of this sequence. (2)
 [16]

QUESTION 3

- 3.1 A quadratic number pattern $T_n = an^2 + bn + c$ has a first term equal to 1. The general term of the first differences is given by 4n + 6.
 - 3.1.1 Determine the value of a. (2)
 - 3.1.2 Determine the formula for T_n . (4)
- 3.2 Given the series: $(1 \times 2) + (5 \times 6) + (9 \times 10) + (13 \times 14) + ... + (81 \times 82)$
 - Write the series in sigma notation. (It is not necessary to calculate the value of the series.)

 (4)

 [10]

211	m / 4) 1	T	
2.1.1	$T_n = a + (n-1)d$		
	300 = 18 + (n-1)6	$\checkmark a = 18 \text{ and } d = 6$	
	300 = 18 + 6n - 6	$\checkmark T_n = 300$	
	6n = 288		
	n = 48	✓ answer	
			(3)
2.1.2	$S_n = \frac{n}{2} [2a + (n-1)d]$	/ 1	
	_	✓ substitution in formula	
	$=\frac{48}{2}[2(18)+47(6)]$	тогнига	
	2	✓ answer	
	= 7632		(2)
2.1.3	Sum of all numbers from 1 to 300 / Som van alle getalle van 1 tot 300		
	$=\frac{300}{2}[2(1)+299(1)]$	✓ substitution	
	2		
	$=\frac{300(301)}{2}$	✓ answer	
	2		
	= 45150		
	Sum of numbers not divisible by 6 / Som van getalle wat nie deelbaar		
	deur 6 is nie	((7000 - 6 - 10)	
	= 45150 - (7632 + 6 + 12)	✓ (7632+6+12) ✓ answer	
	= 37500	✓ answer	(4)
2.2.1	16, 8; 4;		(+)
	1		
	$r = \frac{1}{2}$	$\checkmark r = \frac{1}{}$	
	$r = \frac{1}{2}$ $T_n = ar^{n-1}$	$\frac{1}{2}$	
	$=16\left(\frac{1}{2}\right)^{n-1}$		
	(-)		
	$=2^{4}(2^{-n+1})$	✓ answer	
	$=2^{5-n}$	(in any format)	
			(2)
2.2.2	16 + 8 + 4 + 2 + 1 + 1 = 21	√16+8+4+2+1	+
	$16 + 8 + 4 + 2 + 1 + \frac{1}{2} = 31$	1	
	$S_5 = 31$	$\frac{1}{2}$ \checkmark S ₅ = 31	
		$\checkmark S_5 = 31$	
	$n > 5$ or $n \ge 6$		
		$\checkmark n > 5 / n \ge 6$	
			(3)
			(0)

		Computed by Navan Mudal
	$S_n = \frac{a(1-r^n)}{1-r}$	✓ S _n > 31
	$31 < \frac{16\left(1 - \frac{1}{2}^{n}\right)}{1 - \frac{1}{2}}$	✓ simplification
	$31 < 32(1 - 2^{-n})$ $\frac{31}{32} - 1 < -2^{-n}$	$\checkmark n > 5 / n \ge 6$
	$\frac{1}{32} > 2^{-n}$ $2^{-5} > 2^{-n}$	(3)
2.2.3	$n > 5$ or $n \ge 6$	
2.2.3	$S_{\infty} = \frac{a}{1-r}$ $= \frac{16}{1-\frac{1}{2}}$ $= 32$	✓ substitution of a and r ✓ answer (2)
	OR $16+8+4+2+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}$ Answer gets closer and closer to 32 the more terms gets added together Antwoord beweeg nader en nader aan 32 hoe meer terme bymekaar getel word	✓ expanding the series ✓ answer (2) [16]

3.1.1	1; x ; y ; z $T_n = 4n + 6$		
	10; 14; 18		
	1 x y		
		and rice	
	10 14	2^{nd} difference = 4	
	2a = 4	$\checkmark 2a = 4$	
	a = 2	$\sqrt{a} = 2$	
	OR	v u - 2	(2)
	OK		(2)
	$T_n = 4n + 6$		
	d=4	$\checkmark 2a = 4$	
	2a = 4	$\checkmark a = 2$	
	a=2		(2)
3.1.2			
	1 x y		
		√1 st differences	
	10 14	10; 14; 18	
	4		
	3a + b = 10	$\checkmark 3a + b = 10$	
	6 + b = 10		
	b = 4		
	. 7		
	a+b+c=1	$\sqrt{a+b+c}=1$	
	2 + 4 + c = 1	. 4+0+0-1	
	c = -5		
		$\checkmark T_n = 2n^2 + 4n - 5$	
	$T = 2u^2 + 4u$	$\mathbf{v} \mathbf{I}_n = 2n + 4n - 3$	
	$T_n = 2n^2 + 4n - 5$		(4)

3.2 Consider the sequence made up by the first factors of each term:

Beskou die ry wat deur die eerste faktore van elke term gevorm word:

1; 5; 9; 13; ... 81

An arithmetic sequence / rekenkundige ry:

$$T_n = a + (n-1)d$$
$$= 1 + (n-1)4$$

$$=4n-3$$

To find the no. of terms: 81 = 4n - 3Aantal terme: 4n = 84

 $\therefore n = 21$

$$\checkmark T_n = 4n - 3$$

√no. of terms

The second factor is 1 more than the first factor / Tweede faktor is 1 meer as die eerste faktor:

$$T_n = 4n - 3 + 1$$
$$= 4n - 2$$

 $\checkmark T_n = 4n - 2$

OR

Consider the sequence made up by the second factors of each term: Beskou die ry wat deur die tweede faktore van elke term gevorm word:

2; 6; 10; 14; ...82

Also an arithmetic sequence / rekenkundige ry:

$$T_n = a + (n-1)d$$

= 2 + (n-1)4
= 4n-2

$$\checkmark T_n = 4n - 2$$

Answer only full marks

In sigma notation:

$$\sum_{n=1}^{21} (4n-3)(4n-2) \quad \text{or} \quad \sum_{n=1}^{21} 2(4n-3)(2n-1) \quad \text{or} \quad \sum_{n=1}^{21} (16n^2-20n+6)$$

✓ answer in sigma notation

> (4) [10]

February 2015

QUESTION 2

- 2.1 Prove that in any arithmetic series in which the first term is a and whose constant difference is d, the sum of the first n terms is $S_n = \frac{n}{2}[2a + (n-1)d]$. (4)
- 2.2 Calculate the value of $\sum_{k=1}^{50} (100 3k).$ (4)
- 2.3 A quadratic sequence is defined with the following properties:

$$T_2 - T_1 = 7$$

 $T_3 - T_2 = 13$
 $T_4 - T_3 = 19$

2.3.1 Write down the value of:

$$(a) T_5 - T_4 (1)$$

(b)
$$T_{70} - T_{69}$$
 (3)

2.3.2 Calculate the value of T_{69} if $T_{89} = 23594$. (5)

QUESTION 3

Consider the infinite geometric series: 45 + 40.5 + 36.45 + ...

- 3.1 Calculate the value of the TWELFTH term of the series (correct to TWO decimal places).
 (3)
- 3.2 Explain why this series converges. (1)
- 3.3 Calculate the sum to infinity of the series. (2)
- 3.4 What is the smallest value of n for which $S_{\infty} S_n < 1$? (5)

2.1	$S_n = a + (a+d) + (a+2d) + \dots + a + (n-1)d$ $S_n = a + (n-1)d + a + (n-2)d + a + (n-3)d + \dots + a$ $2S_n = n(2a + (n-1)d)$ $S_n = \frac{n}{2}[2a + (n-1)d]$	✓ first series/eerste reeks ✓ series reversed/reeks omgekeer ✓ sum/som ✓ division/deling (4)
2.2	$\sum_{k=1}^{50} (100 - 3k) = 97 + 94 + 91 + \dots$ $T_1 = a = 97$ $d = -3$ $n = 50 - 1 + 1 = 50$ $S_n = \frac{n}{2} [2a + (n - 1)d]$ $= \frac{50}{2} [2(97) + 49(-3)]$ $= 1175$	$\sqrt{a} = 97$ $\sqrt{d} = -3$ $\sqrt{n} = 50$ ✓ answer/antwoord (4)
	OR/OF $T_{1} = a = 97$ $l = 100 - 3(50) = -50$ $n = 50 - 1 + 1 = 50$ $S_{n} = \frac{n}{2}[a + l]$ $= \frac{50}{2}[97 - 50]$ $= 1175$	√a = 97 $ √l = -50 $ $ √n = 50 $ $ √ answer/antwoord $ (4)

		Compiled by Navan Mud
2.3.1 (a)	$T_5 - T_4 = 25$	✓ answer/antwoord (1)
2.3.1 (b)	$T_{70} - T_{69} = 7 + (69 - 1)(6)$	√n = 69
	= 415	$\checkmark 7 + (69 - 1)(6)$ $\checkmark \text{ answer/} antw. $ (3)
2.3.2	$T_{89} - T_{69} = (T_{70} - T_{69}) + (T_{71} - T_{70}) + + (T_{89} - T_{88})$ $= 415 + 421 + \text{to } 20 \text{ terms}$ $= \frac{20}{2} [2(415) + 19(6)]$ $= 9440$ $T_{69} = T_{89} - (\text{sum of the differences from/som van die verskille van } T_{69} \text{ to } T_{89})$	✓ expansion/uitbreiding ✓ n = 20 ✓ method/metode ✓ a = 415
	$T_{69} = 23594 - 9440$ = 14154	✓ answer/antwoord (5)
	$7 13 19 25$ $6 6 6$ $\therefore 2a = 6$ $a = 3$	
	3a + b = 7 $b = -2$	✓ a and/en b
	$T_{89} = 3(89)^2 - 2(89) + c = 23594$ $\therefore c = 9$ $\therefore T_n = 3n^2 - 2n + 9$ $\therefore T_{69} = 3(69)^2 - 2(69) + 9$	✓ T ₈₉ (subst n = 89) ✓ T _n ✓ substitution/substitusie
	$T_{69} = 3(09) - 2(09) + 9$ $T_{69} = 14154$	✓ answer/antwoord (5

OR/OF

$$\therefore 2a = 6$$

$$a = 3$$

$$7 - 6 = 1$$

$$T_1 - T_0 = 1$$

$$a + b + c - c = 1$$

$$3 + b = 1$$

$$b = -2$$

$$T_{89} = 3(89)^2 - 2(89) + c = 23594$$

$$\therefore c = 9$$

$$\therefore T_n = 3n^2 - 2n + 9$$

$$\therefore T_{69} = 3(69)^2 - 2(69) + 9$$

$$\therefore T_{69} = 14154$$

✓ a and/en b

✓ T_{89} (subst n = 89)

 $\checkmark T_n$

✓ substitution/substitusie

√ answer/antwoord

(5) [17]

OR/OF

$$T_{n+1} - T_n = 7 + 6(n-1)$$

$$T_{89} - T_1 = \sum_{n=1}^{88} (T_{n+1} - T_n)$$

$$= \frac{n}{2} [2a + (n-1)d]$$

$$= \frac{88}{2} [14 + 87 \times 6]$$

$$= 23584$$

√ formula/formule

= 25564 504 00504 10

$$T_1 = 23594 - 23584 = 10$$

$$T_{69} - 10 = \sum_{n=1}^{68} (T_{n+1} - T_n)$$

✓ first term value/ eerste term waarde

✓ answer/antwoord

 $= 34(15 + 67 \times 6) = 14144$

 $T_{69} = 14154$

✓ substitution/substitusie

√value of/waarde van S₈₈

 $4(15 + 67 \times 6) = 14144$

(5) [17]

QUESTION 3

3.1	40.5	$\sqrt{r} = 0.9$
	$r = \frac{40,5}{45} = 0,9$	
	$T_{12} = 45(0.9)^{12-1}$	√ substitution into
		correct formula/substitusie in
	=14,12147682	korrekte formule
	=14,12	✓ answer/antwoord
		(3)
3.2	r = 0.9	
	-1 < 0.9 < 1	√answer/antwoord
		(1)
3.3	45	
	$S_{\infty} = \frac{45}{1 - 0.9}$	✓ substitution/substitusie
	$S_{\infty} = 450$	√ 450
		(2)
3.4	$S_{\infty} - S_n < 1$	$45(1-(0.9)^n)$
	$45(1-(0.9)^n)$	$\checkmark 450 - \frac{45(1-(0,9)^n)}{1-0.9}$
	$S_{\infty} - S_n = 450 - \frac{45(1 - (0.9)^n)}{1 - 0.9}$	1 0,5
	,-	
	$S_{\infty} - S_n = 450 - 450(1 - (0.9)^n)$	
	$450(0.9)^n < 1$	
		((2.2)" 1
	$(0,9)^n < \frac{1}{450}$	$\checkmark (0,9)^n = \frac{1}{450}$
	450	430
	$\log(0.9)^n < \log\frac{1}{450}$	
	430	
	$n.\log(0.9) < \log \frac{1}{450}$	
	$n\log(0.9) < \log \frac{1}{450}$	✓ introducing/gebruik logs
	, 1	
	$n > \frac{\log \frac{1}{450}}{\log(0.9)}$	
	$n > \frac{\log(0.9)}{\log(0.9)}$	✓ making n the subject/maak n
	n > 57.98	die onderwerp
	Smallest value/Kleinste waarde: $n = 58$	4
	Smallest value/Kieinsie waarde. n – 30	$\checkmark_n = 58 \tag{5}$
		[11]

November 2015

QUESTION 2

The following geometric sequence is given: 10;5;2,5;1,25;...

- 2.1 Calculate the value of the 5^{th} term, T_5 , of this sequence. (2)
- 2.2 Determine the n^{th} term, T_n , in terms of n. (2)
- Explain why the infinite series 10 + 5 + 2.5 + 1.25 + ... converges. (2)
- 2.4 Determine $S_{\infty} S_n$ in the form ab^n , where S_n is the sum of the first n terms of the sequence. (4)

QUESTION 3

Consider the series: $S_n = -3 + 5 + 13 + 21 + ...$ to *n* terms.

- 3.1 Determine the general term of the series in the form $T_k = bk + c$. (2)
- 3.2 Write S_n in sigma notation. (2)
- 3.3 Show that $S_n = 4n^2 7n$. (3)
- 3.4 Another sequence is defined as:

$$Q_1 = -6$$

$$Q_2 = -6 - 3$$

$$Q_3 = -6 - 3 + 5$$

$$Q_4 = -6 - 3 + 5 + 13$$

$$Q_5 = -6 - 3 + 5 + 13 + 21$$

- 3.4.1 Write down a numerical expression for Q_6 . (2)
- 3.4.2 Calculate the <u>value</u> of Q_{129} . (3)

2.1	$r = \frac{T_2}{T_1}$ $= \frac{5}{10}$ $= \frac{1}{2}$ $T_5 = 1.25 \left(\frac{1}{2}\right)$ $= \frac{5}{8} \text{ or } 0.625$ OR/OF $= \frac{5}{8} \text{ or } 0.625$ OR/OF $= \frac{5}{8} \text{ or } 0.625$	$\checkmark r = \frac{1}{2}$ \checkmark answer (2)
2.2	$T_n = 10 \left(\frac{1}{2}\right)^{n-1}$	✓ substitutes $a = 10$ into GP formula ✓ substitutes $r = \frac{1}{2}$ into GP formula
2.3	For convergence/Om te konvergeer $-1 < r < 1$ Since/Aangesien $r = \frac{1}{2}$ and/en $-1 < \frac{1}{2} < 1$ the sequence converges/die ry konvergeer	$\sqrt{-1} < r < 1$ ✓ show that $r = \frac{1}{2}$ is -1 < r < 1
2.4	$S_{\infty} - S_{n} = \frac{a}{1 - r} - \frac{a(1 - r^{n})}{1 - r}$ $= \frac{10}{1 - \frac{1}{2}} - \frac{10\left(1 - \frac{1}{2}^{n}\right)}{1 - \frac{1}{2}}$ $= 20 - 20\left(1 - \frac{1}{2}^{n}\right)$ $= 20 - 20 + 20\left(\frac{1}{2}^{n}\right)$ $= 20\left(\frac{1}{2}^{n}\right)$	$ \sqrt{\frac{10}{1 - \frac{1}{2}}} $ $ \sqrt{\frac{10\left(1 - \frac{1}{2}^{n}\right)}{1 - \frac{1}{2}}} $ $ \sqrt{20\left(1 - \frac{1}{2}^{n}\right)} $ $ \sqrt{\text{answer}} $
	OR/OF	✓ constructing the series

1100/1100 Melloralidali

$$\begin{split} \mathbf{S}_{\infty} - \mathbf{S}_n &= T_{n+1} + T_{n+2} + T_{n+3} + \dots \\ &= 10 \bigg(\frac{1}{2} \bigg)^n \bigg[1 + \frac{1}{2} + \frac{1}{4} + \dots \bigg] \\ &= 10 \bigg(\frac{1}{2} \bigg)^n \Bigg[\frac{1}{1 - \frac{1}{2}} \Bigg] \\ &= 20 \bigg(\frac{1}{2} \bigg)^n \end{split}$$

$$10\left(\frac{1}{2}\right)^{n}\left[1+\frac{1}{2}+\frac{1}{4}+\dots\right]$$

$$\checkmark \frac{1}{1-\frac{1}{2}}$$

$$\checkmark \text{answer}$$

(4)

(4) [10]

OR/OF

$$S_{\infty} - S_n = \frac{a}{1-r} - \frac{a(1-r^n)}{1-r}$$

$$= \frac{a-a+ar^n}{1-r}$$

$$= \frac{ar^n}{1-r}$$

$$= \frac{10\left(\frac{1}{2}\right)^n}{\frac{1}{2}}$$

$$= 20\left(\frac{1}{2}\right)^n$$

$$\sqrt{\frac{a-a+ar^n}{1-r}}$$

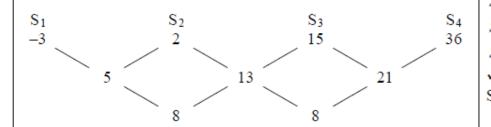
$$\sqrt{\frac{ar^n}{1-r}}$$

$$\sqrt{\frac{10\left(\frac{1}{2}\right)^n}{\frac{1}{2}}}$$

$$\sqrt{\text{answer}}$$

3.1	d = 8	✓ d value
	$T_k = a + (k-1)d$	
	=-3+(k-1)(8)	
	= -3 + 8k - 8 = $8k - 11$	
	- ok - 11	✓answer (2)
3.2	$\sum_{k=1}^{n} (8k-11) \mathbf{OR}/\mathbf{OF} \sum_{k=0}^{n-1} (8(k+1)-11) = \sum_{k=0}^{n-1} (8k-3)$	✓ for general term ✓ lower and upper values in sigma notation (2)
3.3	$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$	√formula
	$= \frac{n}{2} [2(-3) + (n-1)(8)]$	✓substitution
	$=\frac{n}{2}\left[-6+8n-8\right]$	
	$=\frac{n}{2}[8n-14]$	$\sqrt{\frac{n}{2}}[8n-14]$
	=n(4n-7)	(3)
	$=4n^2-7n$	
	OR/OF	
	$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$	✓ formula
	$= \frac{n}{2} [2(-3) + (n-1)(8)]$	✓substitution
	$=\frac{n}{2}[-6+8n-8]$	$\checkmark \frac{n}{2}[8n-14]$
	$=\frac{n}{2}[8n-14]$	(3)
	$=4n^2-7n$	
	OR/OF	
	$S_n = \frac{n}{2} [a+l]$	√formula
	$= \frac{n}{2} \left[-3 + 8n - 11 \right]$	✓substitution
	$=\frac{n}{2}[8n-14]$	$\sqrt{\frac{n}{2}}[8n-14]$
	$=4n^2-7n$	(3)

OR/OF



$$S_2 = -3 + 5 = 2$$

 $S_3 = 2 + 13 = 15$
 $S_4 = 15 + 21$
 \checkmark calculates S_1 , S_2 , S_3 and S_4 ,

$$S_n = an^2 + bn + c$$

$$a = \frac{8}{2}$$
$$a = 4$$

$$S_1 = 4 + b + c = -3$$

$$b+c=-7$$
(1)

$$S_2 = 16 + 2b + c = 2$$

$$2b + c = -14....(2)$$

 $b = -7...(2) - (1)$

$$c = 0$$

 $\checkmark a = 4$

Hence $S_n = 4n^2 - 7n$

√ solves simultaneously for b and c. (3)

 $Q_6 = -6 - 3 + 5 + 13 + 21 + 29$ 3.4.1

√√ answer

(2)

 $Q_{129} = -6 + S_{128}$ 3.4.2 $=-6+4(128)^2-7(128)$

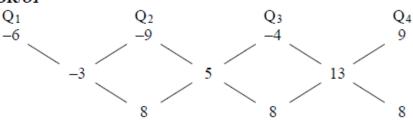
//

$$-6+4(128)^2-7(128)$$

=64634

√answer

OR/OF



(3)

 $Q_n = an^2 + bn + c$

a = 4

$$Q_1 = 4 + b + c = -6$$

$$b+c=-10$$
(1)

$$Q_2 = 16 + 2b + c = -9$$

$$Q_2 = 16 + 2b + c = -9$$
 $2b + c = -25$(2)

$$b = -15....(2) - (1)$$

c = 5

Hence $Q_n = 4n^2 - 15n + 5$

$$Q_{129} = 4(129)^2 - 15(129) + 5$$

= 64 634

 $\sqrt{Q_n} = 4n^2 - 15n + 5$

✓ answer

 $\sqrt{a} = 4$

(3)

March 2016

(2)

(4)

QUESTION 2

- 2.1 Given the following quadratic sequence: -2; 0; 3; 7; ...
 - 2.1.1 Write down the value of the next term of this sequence. (1)
 - 2.1.2 Determine an expression for the n^{th} term of this sequence. (5)
 - 2.1.3 Which term of the sequence will be equal to 322? (4)
- 2.2 Consider an arithmetic sequence which has the second term equal to 8 and the fifth term equal to 10.
 - 2.2.1 Determine the common difference of this sequence. (3)
 - 2.2.2 Write down the sum of the first 50 terms of this sequence, using sigma notation.
 - 2.2.3 Determine the sum of the first 50 terms of this sequence. (3)

QUESTION 3

Chris bought a bonsai (miniature tree) at a nursery. When he bought the tree, its height was 130 mm. Thereafter the height of the tree increased, as shown below.

INCREASE IN HEIGHT OF THE TREE PER YEAR			
During the first year	During the second year	During the third year	
100 mm	70 mm	49 mm	

- 3.1 Chris noted that the sequence of height increases, namely 100; 70; 49 ..., was geometric. During which year will the height of the tree increase by approximately 11,76 mm?
- 3.2 Chris plots a graph to represent the height h(n) of the tree (in mm) n years after he bought it. Determine a formula for h(n). (3)
- 3.3 What height will the tree eventually reach? (3)

2.1.1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	The next term of the sequence is 12./Die volgende term in die ry is 12.	√answer	(1)
2.1.2	2a = 1		,
	$a = \frac{1}{2}$	✓ value of a	
	$3a + b = T_2 - T_1$ $3\left(\frac{1}{2}\right) + b = 2$	$\checkmark 3\left(\frac{1}{2}\right) + b = 2$	
	$b = \frac{1}{2}$ $a + b + c = T_1$	✓value of b	
	$\frac{1}{2} + \frac{1}{2} + c = -2$ $c = -3$	$\sqrt{\frac{1}{2} + \frac{1}{2} + c} = -2$	
	$\therefore T_n = \frac{1}{2}n^2 + \frac{1}{2}n - 3$	✓ value of c	(5)
	OR/OF		

✓ value of a

 $\sqrt{-2} = \frac{1}{2} + b + c$

 $\sqrt{0} = 2 + 2b + c$

$$2a = 1$$

$$a = \frac{1}{2}$$

$$T_n = an^2 + bn + c$$

$$-2 = \frac{1}{2} + b + c \dots T_1$$

$$b+c = -\frac{5}{2}$$
.....line 1

$$0 = 2 + 2b + c \dots T_2$$

$$2b + c = -2$$
.....line 2

line 2 - line 1:

$$b = \frac{1}{2}$$

substitute in line 1 or substitute in line 2

$$\frac{1}{2} + c = -\frac{5}{2}$$

$$2\left(\frac{1}{2}\right) + c = -2$$

$$c = -3$$

$$\therefore T_n = \frac{1}{2}n^2 + \frac{1}{2}n - 3$$

✓ value of c

(5)

(5)

✓ value of b

OR/OF

$$\begin{split} \mathbf{T}_n &= \mathbf{T}_1 + (n-1)d_1 + \frac{(n-1)(n-2)}{2}d_2 \\ &= -2 + (n-1)(2) + \frac{(n-1)(n-2)}{2}(1) \end{split}$$

$$= -2 + (n-1)(2) + \frac{2}{2}$$
(1)
= -2 + 2n - 2 + (n² - 3n + 2)(\frac{1}{2})

$$= -2 + 2n - 2 + \frac{1}{2}n^2 - \frac{3}{2}n + 1$$

$$= \frac{1}{2}n^2 + \frac{1}{2}n - 3$$

- ✓ value of a
- ✓ value of b
- ✓ value of c

✓ value of a

 $\checkmark 3\left(\frac{1}{2}\right) + b = 2$

OR/OF

$$2a = 1$$

$$a=\frac{1}{2}$$

$$3a + b = T_2 - T_1$$

$$3\left(\frac{1}{2}\right) + b = 2$$

$$b = \frac{1}{2}$$

$$T_0 = c = -3$$

OR/OF

$$\therefore T_n = \frac{1}{2}n^2 + \frac{1}{2}n - 3$$

$\checkmark T_0 = c$

✓ value of c

✓ value of b

(5)

		Compiled by Navan Mudal
	Since $T_2 = 0$, $(n-2)$ is a factor of T_n	
	$T_n = an^2 + bn + c$	
	=a(n-2)(n-k)	
	$T_1 = -2 = a(1-2)(1-k)$	
	-2 = -a(1-k)	(= (a))
	$a = \frac{2}{1 - k}$	$\checkmark T_n = a(n-2)(n-k)$
		$\sqrt{-2} = a(1-2)(1-k)$
	$T_3 = 3 = a(3-2)(3-k)$	- "()(- ")
	3 = a(3 - k)	(- ()()
	$a = \frac{3}{3 - k}$	$\checkmark 3 = a(3-2)(3-k)$
	$\frac{2}{1-k} = \frac{3}{3-k}$	
	2(3-k) = 3(1-k)	
	6 - 2k = 3 - 3k	
	k = -3	
	$a=\frac{1}{2}$	✓ value of k
	$u = \frac{1}{2}$	value of k
	$T_n = \frac{1}{2}(n-2)(n+3)$	
	. .	✓ value of a
	$=\frac{1}{2}n^2+\frac{1}{2}n-3$	(5)
2.1.3	$\frac{1}{2}n^2 + \frac{1}{2}n - 3 = 322$	$\sqrt{\frac{1}{2}n^2 + \frac{1}{2}n - 3} = 322$
	2 2	2 2
	$n^2 + n - 6 = 644$	
	$n^2 + n - 650 = 0$	✓standard form
	$n = \frac{-1 \pm \sqrt{1^2 - 4(1)(650)}}{2}$	✓ substitution into
	2	quadratic formula
	n = 25 or $n = -26$	
	The 25 th term has a value of 322./Die 25 ^{ste} term se waarde is 322.	√answer
	OR/OF	(4)
	$\frac{1}{2}n^2 + \frac{1}{2}n - 3 = 322$	√1 · 1
	2 2	$\sqrt{\frac{1}{2}n^2 + \frac{1}{2}n - 3} = 322$
	$n^2 + n - 6 = 644$	
	$n^2 + n - 650 = 0$	✓standard form
	(n-25)(n+26)=0	40
	n = 25 or $n = -26$	√ factors
	The 25 th term has a value of 322./Die 25 ^{ste} term se waarde is 322.	√answer
	ODIOE	(4)
	OR/OF	

		Compiled by Navan Mudal
	$\frac{1}{2}n^2 + \frac{1}{2}n - 3 = 322$ $n^2 + n - 6 = 644$ $(n+3)(n-2) = 23 \times 28$ $n-2 = 23$	$\sqrt{\frac{1}{2}n^2 + \frac{1}{2}n - 3} = 322$ $\sqrt{(n+3)(n-2)}$ $\sqrt{23 \times 28}$
2.2.1	$n = 25$ $T_2: \qquad a+d=8$ $T_5: \qquad a+4d=10$	✓ answer (4) $\checkmark a + d = 8$ $\checkmark a + 4d = 10$
2.2.2	$T_5 - T_2: \qquad 3d = 2$ $d = \frac{2}{3}$ $T_1 = T_2 - d$	✓answer (3)
	$= 8 - \frac{2}{3}$ $= \frac{22}{3}$ $T_n = a + (n-1)d$	$\checkmark T_1 = \frac{22}{3}$
	$= \frac{22}{3} + (n-1)\frac{2}{3}$ $= \frac{2n+20}{3}$ $S_{50} = \sum_{n=1}^{50} \left(\frac{22}{3} + (n-1)\frac{2}{3}\right)$	✓answer (2)
	OR/OF $S_{50} = \sum_{n=1}^{50} \left(\frac{2n+20}{3} \right)$	(2)
2.2.3	$S_n = \frac{n}{2} [2a + (n-1)d]$ $S_{50} = \frac{50}{2} \left[2\left(\frac{22}{3}\right) + (50 - 1)\left(\frac{2}{3}\right) \right]$ $= \frac{3550}{3}$	✓ correct substitution into correct formula ✓ ✓ answer (3) [18]

	1	
3.1	$r = \frac{70}{100}$	
	$=\frac{7}{10}$	(1 6
		✓ value of r
	$T_n = ar^{n-1}$	
	$11,76 = 100 \left(\frac{7}{10}\right)^{n-1}$	✓ substitution in formula for T_n
	$\left(\frac{7}{10}\right)^{n-1} = \frac{11,76}{100}$	
	$n-1 = \log_{\frac{7}{10}} \left(\frac{11,76}{100} \right).$	√use of logarithms
	n-1=6	
	n = 7	✓answer
	During the 7 th year/In die 7 ^{de} jaar	(4)
	OR/OF	
	$r = \frac{70}{100}$	
	$=\frac{7}{10}$	✓ value of r
	10	
	$T_n = ar^{n-1}$	
	$11,76 = 100(0,7)^{n-1}$	✓ substitution in
	$0.7^{n-1} = \frac{11.76}{10.00000000000000000000000000000000000$	formula for T_n
	$0.7^{\prime\prime\prime} = \frac{100}{100}$	
	= 0,1176	
	$(n-1)\log 0.7 = \log 0.1176$	✓use of logarithms
	$n - 1 = \frac{\log 0,1176}{\log 0,7}$	
	n-1=6	
	n = 7 During the 7 th year/In die 7 ^{de} jaar	✓answer (4)
3.2	h(n) = 130 + (100 + 70 + 49 + to n terms)	√ 130
	$100(1-(0.7)^n)$	√ 100 70 40 4
	$= 130 + \frac{100(1 - (0,7)^n)}{1 - 0,7}$ $= 130 + \frac{100(1 - (0,7)^n)}{0,3}$	100 + 70 + 49 + to <i>n</i> terms
	$100(1-(0.7)^n)$	
	= 130 +	✓ answer
		(3)

3.3	Eventual height of the tree/Uiteindelike hoogte van die boom	//130 ± 100
	$=130+\frac{100}{}$	$\checkmark \checkmark 130 + \frac{100}{1 - 0.7}$
	$\frac{-130+}{1-0.7}$	
	$= 463,33 \text{ mm}$ OR $\frac{1390}{1000} \text{ mm}$	✓answer
	$= 463,33 \text{ mm}$ OR $\frac{1330}{3} \text{ mm}$	(3)
		[10]

November 2016

QUESTION 2

Given the finite arithmetic sequence: 5; 1; -3; ...; -83; -87

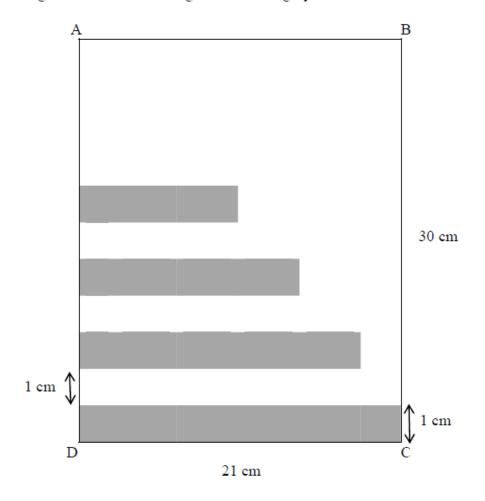
- 2.1 Write down the fourth term (T_4) of the sequence. (1)
- 2.2 Calculate the number of terms in the sequence. (3)
- 2.3 Calculate the sum of all the negative numbers in the sequence. (3)
- 2.4 Consider the sequence: 5; 1; -3; ...; -83; -87; ...; -4187

 Determine the number of terms in this sequence that will be exactly divisible by 5. (4)

 [11]

QUESTION 3

- 3.1 The first four terms of a quadratic number pattern are -1; x; 3; x + 8
 - 3.1.1 Calculate the value(s) of x. (4)
 - 3.1.2 If x = 0, determine the position of the first term in the quadratic number pattern for which the sum of the first n first differences will be greater than 250. (4)
- 3.2 Rectangles of width 1 cm are drawn from the edge of a sheet of paper that is 30 cm long such that there is a 1 cm gap between one rectangle and the next. The length of the first rectangle is 21 cm and the length of each successive rectangle is 85% of the length of the previous rectangle until there are rectangles drawn along the entire length of AD. Each rectangle is coloured grey.



- 3.2.1 Calculate the length of the 10th rectangle. (3)
- 3.2.2 Calculate the percentage of the paper that is coloured grey. (4)
 [15]

Page 99 of 103

2.1	$T_4 = -7$	✓ -7	
	Ť		(1)
2.2	$T_n = a + (n-1)d$,	
	-87 = 5 + (n-1)(-4)	$\checkmark a = 5 \text{ and } d = -4$	
	-87 = 5 - 4n + 4	$\checkmark -87 = 5 + (n-1)(-4)$	
	4n = 96		
	n = 24	$\checkmark n = 24$	(2)
	ODIOE		(3)
	OR/OF		
	-4n + 9 = -87	$\sqrt{-4n+9}$	
	-4n = -96	$\sqrt{-4n+9} = -87$	
	n = 24	$\sqrt{n} = 24$	
			(3)
2.3	-3;-7;;-87		
	$S_n = \frac{n}{2} [a + T_n]$		
	-	✓ n = 22	
	$S_{22} = \frac{22}{2} \left[-3 - 87 \right]$	$\checkmark a = -3$	
	= -990	✓ answer	
	990	answer	(3)
	OR/OF		` /

$$-3; -7; \dots; -87$$

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$S_{22} = \frac{22}{2} [2(-3) + (22-1)(-4)]$$

$$= -990$$

$$\checkmark$$
 n = 22
 \checkmark a = -3
 \checkmark answer (3)

OR/OF

All negative terms can be written down and added to get the answer of -990./Alle negatiewe terme kan neergeskryf word en dan bymekaar getel word om -990 te kry.

$$\sqrt{a} = -3$$
 $\sqrt{\sqrt{answer}}$ (3)

OR/OF

Sum =
$$S_{24} - (5+1)$$

= $\frac{24}{2} [5-87] - 6$
= -990

$$\checkmark \frac{24}{2} [5 - 87]$$

$$\checkmark -6$$

$$\checkmark \text{ answer}$$
(3)

2.4 5;-15;-35......

$$d = -20$$

$$T_n = -20n + 25$$

Last term in the sequence divisible by 5 is:/Laaste term in die ry deelbaar deur 5 is:

$$-4187 + 4(3)$$

$$= -4175$$

$$T_n = -20n + 25$$

$$-4175 = -20n + 25$$

$$20n = 4200$$

$$n = 210$$

There will be 210 terms in the sequence that is divisible by 5./Daar is 210 terme in die ry deelbaar deur 5.

$$\checkmark d = -20$$

$$\checkmark T_n = -20n + 25$$

$$\sqrt{-4175} = -20n + 25$$

$$\sqrt{n} = 210$$

OR/OF

(4)

$$T_n = -4n + 9$$

- 4187 = -4n + 9

$$4n = 4196$$

$$n = 1049$$

There are 1049 terms in the sequence./Daar is 1049 terme in die ry.

 T_1 ; T_6 ; T_{11} ; T_{16} ... are divisible by 5./is deelbaar deur 5.

The largest integer value of k such that

$$5k - 4 \le 1049$$

$$5k \le 1053$$

$$k \le 210,6$$

$$k = 210$$

 $\checkmark -4n + 9 = -4187$

$$\sqrt{n} = 1049$$

$$\checkmark$$
 5k − 4 ≤ 1049

$$\sqrt{k} = 210$$

(4)

OR/OF

$$T_n = a + (n-1)d$$

$$-4175 = 5 + (n-1)(-4)$$

$$-4180 = -4(n-1)$$

$$n = 1046$$

Number of terms divisible by 5

$$=\frac{1046-1}{5}+1$$
$$=210$$

 $\checkmark d = -4$

$$\sqrt{-4175} = -4n + 9$$

$$\sqrt{n} = 210$$

(4) **[11]**

3.1.1	-1 ; x ; 3 ; $x+8$;	
3.1.1	-1; x ; y	
	x+1 $x+1$ $x+5$ $x+8$	$\checkmark x+1; 3-x \text{ and } x+5$
	$-2x+2 \qquad 2x+2$	✓ calculating second differences $\checkmark -2x + 2 = 2x + 2$
	-2x+2=2x+2	2x + 2 = 2x + 2
	4x = 0	$\checkmark x = 0 \tag{4}$
2.1.2	x = 0	
3.1.2	First differences/Eerste verskille: 1;3;5;	
	$S_n = \frac{n}{2} [2(1) + (n-1)(2)]$	$\checkmark S_n = n^2$
	$=n^2$	
	$250 < n^2$	$\checkmark S_n > 250$
	$n > \sqrt{250}$	
	$\therefore n > 15.8$	✓ n > 15,8
	The sum of the 16 first differences will be greater than 250. Therefore the 17 th term of the quadratic number pattern is the first satisfying this condition./Die som van 16 eerste verskille sal groter as 250 wees. Gevolglik sal die 17 ^{de} term van die	$\checkmark n = 17$ (4)
	kwadratiese getalpatroon die eerste wees wat aan die	
	voorwaarde voldoen.	
3.2.1	$21 + 21(0.85) + 21(0.85)^2 + \dots$	
	$T_{n} = ar^{n-1}$	$\checkmark n = 10 \; ; r = 0.85 \text{ or } \frac{17}{20}$
	$T_{10} = (21)(0.85)^9$	✓ substitution into correct
	= 4,86 cm	formula
		✓ answer
		(3)

3.2.2
$$S_{n} = \frac{a(1-r^{n})}{1-r}$$

$$S_{15} = \frac{21(1-(0.85)^{15})}{1-0.85}$$

$$= 127.77$$
Area of the page = 30 x 21 = 630
Percentage of paper covered in grey ink:
$$= \frac{127.77}{630} \times 100\%$$

$$= 20.28\%$$

$$(4)$$